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A new integration method combining the ADER time discretization with a multi-moment
finite-volume framework is introduced. ADER runtime is reduced by performing only one
Cauchy–Kowalewski (C–K) procedure per cell per time step and by using the Differential
Transform Method for high-order derivatives. Three methods are implemented: (1)
single-moment WENO (WENO), (2) two-moment Hermite WENO (HWENO), and
(3) entirely local multi-moment (MM-Loc). MM-Loc evolves all moments, sharing the
locality of Galerkin methods yet with a constant time step during p-refinement.

Five 1-D experiments validate the methods: (1) linear advection, (2) Burger’s equation
shock, (3) transient shallow-water (SW), (4) steady-state SW simulation, and (5) SW shock.
WENO and HWENO methods showed expected polynomial h-refinement convergence and
successfully limited oscillations for shock experiments. MM-Loc showed expected polyno-
mial h-refinement and exponential p-refinement convergence for linear advection and
showed sub-exponential (yet super-polynomial) convergence with p-refinement in the
SW case.

HWENO accuracy was generally equal to or better than a five-moment MM-Loc scheme.
MM-Loc was less accurate than RKDG at lower refinements, but with greater h- and p-con-
vergence, RKDG accuracy is eventually surpassed. The ADER time integrator of MM-Loc
also proved more accurate with p-refinement at a CFL of unity than a semi-discrete RK ana-
log of MM-Loc. Being faster in serial and requiring less frequent inter-node communication
than Galerkin methods, the ADER-based MM-Loc and HWENO schemes can be spatially
refined and have the same runtime, making them a competitive option for further
investigation.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Numerical simulation has become a so-called third leg of science, and often it is in the form of numerically integrating a
system of conservation laws. Crucial to the success of simulation is efficiently addressing the problem of interest on modern
computers. Here, we restrict attention to the class of time-explicit integration methods for problems with low or limited
stiffness such that the computational efficiency afforded by only local spatial dependence outweighs the time step relaxation
afforded by time-implicit methods. Our immediate application of interest is that of a climate model dynamical core, the
inviscid Euler equations for a stratified, dry fluid on a rotating sphere. However, we see no reason to restrict these methods
to only that application or even to conservation laws. They apply to the more general class of time-dependent PDE systems as
well.
. All rights reserved.
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One design choice we make for efficient parallel integration is reducing the frequency and distance (hops between nodes)
of inter-process parallel communication. Toward this, we adopt the ADER methodology [1–3] for time integration because it is
fully-discrete (i.e., one-step, one-stage) and achieves high-order accuracy in time. This, compared to a multi-stage integrator,
reduces the frequency of inter-process communication over a given simulation time, improving the computation-to-commu-
nication ratio and thus parallel efficiency. Also, for nearest-neighbor data dependence (neighboring cells, not necessarily com-
pute nodes), we choose to implement multi-moment methods and Hermite WENO interpolation [4–6].

By ‘‘moment,’’ we mean any temporally and spatially discrete piece of information describing the fluid state including the
fluid state at a point in space and time, some time or space averaging of the state, any spatial or temporal derivative of the
state (point-wise or averaged), or a set of spatial and/or temporal basis functions onto which the solution is projected. ‘‘Mul-
ti-moment’’ is intended to convey that multiple moments of the fluid state are stored in each cell and evolved directly by the
scheme. The computational domains herein are assumed to be uniquely spanned by equal-sized ‘‘cells.’’ The moments
evolved by the schemes presented herein are cell-averaged spatial derivatives valid at a common point in time. Multi-mo-
ment simulation also improves accuracy because for smooth flows, p-refinement typically shows exponential convergence as
compared to polynomial h-refinement convergence. Hermite methods use not only values of the fluid state but spatial deriv-
atives as well to construct an interpolating function. Hermite WENO methods use the same WENO philosophy except that
the candidate polynomials are constrained by both values and derivatives.

There already exist multi-moment ADER methods implemented as ADER-Galerkin methods [7]. We choose not to adopt
these due to superlinear reduction in maximum stable time step (MSTS) with increasing moments. This reduction in MSTS is
related to the clustering of quadrature grid points near cell edges, but it also depends on the temporal discretization and type
of spatial quadrature used. We investigate an alternative finite-volume (FV) implementation of multiple moments using the
ADER time discretization, which avoids this MSTS reduction and keeps a constant MSTS when increasing the number of mo-
ments (i.e., p-refinement). It will also be demonstrated that ADER time integration, which couples the terms of the PDE at a
high temporal order of accuracy, exhibits accuracy superior to a multi-stage counterpart as the spatial order of the scheme
increases via p-refinement and the CFL number is held at unity. We attribute this to the fact that temporal order of accuracy
increases with p-refinement in ADER methods. Due to decreased communication frequency, we believe a multi-moment, FV
ADER method may permit more h- and/or p-refinement than existing methods for a given simulation throughput due to en-
hanced parallel efficiency. This refinement may in turn lead to a more accurate solution for a given throughput.

The spectral element (SE) method, a continuous Galerkin method with only nearest neighbor data dependence (neighbor-
ing elements, not necessarily nodes), is the current state-of-the-art method for the Community Atmosphere Model (CAM)
[8]. It is locally mass-conserving and makes feasible grid spacings never before reached for the required global climate sim-
ulation throughput of five Simulated Years Per wall clock Day (SYPD). The success of SE demonstrates that improving parallel
efficiency can greatly improve simulation resolution by using present-day supercomputers more effectively. This is even de-
spite efficiency losses due to reduction in MSTS inherent in all Galerkin methods for non-linear PDEs.

Another approach to time-explicit efficiency is the semi-Lagrangian method, particularly characteristics-based variants
[9–11], which perform the semi-Lagrangian treatment on Riemann invariants allowing larger time steps than traditional
FV methods. With characteristics-based semi-Lagrangian methods, the ceiling of the maximum CFL (Courant–Friedrichs–
Lewy) number is the halo (or distance in number of cells) of information that must be communicated per-step. Therefore,
there are trade-offs among communication volume, frequency, and locality. One difficulty with characteristics-based,
semi-Lagrangian methods is that a genuinely multi-dimensional extension is complex to formulate and implement at
high-order accuracy. Also, characteristics-based, semi-Lagrangian methods typically linearize the characteristics over a time
step whereas ADER methods retain more of the non-linear interaction over a time step. Given the success of SE in climate
modeling and the relative simplicity of an Eulerian, multi-moment approach in general, we investigate arbitrarily high-order,
multi-moment FV methods using ADER techniques.

In Section 2, we introduce the fully-discrete FV framework and the ADER methodology as well as a modification to reduce
the cost of ADER schemes which we call ‘‘ADER-Taylor’’. In Section 3, we introduce the fully-discrete FV evolution of higher-
order spatial moments and the multi-moment ADER-Taylor method. In that section, we describe the three methods imple-
mented in this study. Section 4 details the numerical experiments and provides results and discussion. Concluding remarks
and future direction are given in Section 5.
2. ADER-Taylor methods

To accommodate a high-order-accurate (i.e. greater than second-order) and fully-discrete framework, the time evolution
of state variables must be explicitly taken into account. This is most best accomplished by some translation of spatial infor-
mation into temporal information because spatial information is readily available. For instance, characteristics-based meth-
ods (e.g., Roe-type schemes) diagonalize flux Jacobians to determine trajectories for characteristic variables (Riemann
invariants). The trajectories translate from the spatial domain to the temporal. ADER methods also translate spatial informa-
tion into temporal, but they do so in a more direct way and without the use of characteristic decompositions. To our knowl-
edge, time-explicit ADER methods cannot be directly extended to CFL values larger than unity as can characteristics-base,
semi-Lagrangian methods, but they are nonetheless fully-discrete. Before describing the ADER methodology, we give the
fully-discrete FV framework in which we are working.
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The CFL number is defined as CFL ¼ cDt=Dx where c is the fastest wave speed, Dx is the grid spacing, and Dt is the time
step. Regarding Galerkin methods, Dx is assumed to mean the element grid spacing and not the spacing between GLL
quadrature points. While the notion of CFL number by itself has no relation to a particular scheme, the maximum stable
CFL number (MSCFL) specifies the largest CFL value a given scheme can use without amplifying a harmonic input to a linear
system over an arbitrary time step (by the von Neumann approach). In the context of a constant maximum wave speed and
grid spacing, the CFL number acts as a normalization of the time step, and the MSCFL is a normalization of the MSTS.

2.1. Fully-discrete FV framework

Consider the following 1-D generic system of conservation laws with a source term:
@Uðx; tÞ
@t

þ @FðU; x; tÞ
@x

¼ SðU; x; tÞ
where U is a vector of conserved variables, F is the vector of fluxes, and S is a vector of source terms. We integrate the equa-
tion set over a space–time domain xi � Dx=2; xi þ Dx=2½ � � tn; tn þ Dt½ � and apply the Gauss divergence theorem to obtain:
Ui;nþ1 ¼ Ui;n �
Dt
Dx

bFiþ1
2
� bFi�1

2

� �
þ DtbSi ð1Þ
where
Ui;n ¼
1
Dx

Z xiþ1=2

xi�1=2

U n; tnð Þdn; ð2Þ

bFi�1
2
¼ 1

Dt

Z tnþDt

tn

FðUðxi�1
2
; sÞ; xi�1

2
; sÞds; ð3Þ

bSi ¼
1

DxDt

Z tnþDt

tn

Z xiþ1=2

xi�1=2

S U n; sð Þ; n; sð Þdnds; ð4Þ
where xi�1
2
¼ xi � Dx=2 and tnþ1 ¼ tn þ Dt. In practice, (2) is for definition and initialization purposes only and is not computed

during the time stepping. Eqs. (3) and (4) form all that is needed in order to update Ui for the next time step.

2.2. Cauchy–Kowalewski procedure for computing time derivatives

ADER methods use the definition of the PDE system itself via repeated differentiation to determine time derivatives, a pro-
cess referred to in ADER literature as the Cauchy–Kowalewski (hereafter, C-K) procedure. The first time derivative of U is given
in terms the first spatial derivative of U by the definition of the PDE itself, and the second-order space–time derivatives are
computed by spatiotemporal differentiation:
@U
@t
¼ � @F
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@U
@x
þ S

@2U
@x@t

¼ � @F
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@2U
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@2F
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Higher-order time derivatives are obtained by repeated differentiation with respect to space and time, and all derivatives
of U are eventually functions of only spatial derivatives of U (by substitution). In practice, we do this component-by-com-
ponent with symbolic mathematical software. In the end, we have time and mixed space–time derivatives defined at a single
space–time point using only spatial derivatives at that point. The spatial derivatives are obtained from a reconstruction pro-
cedure, that is, a projection of the discrete moments onto a functional model to provide (usually continuous) variation of the
fluid state within a cell or across a stencil of cells. Typically, the functional model is a polynomial, and the projection is a
simple Vandermonde-type matrix inversion that can be pre-computed.

The total number of time and space–time derivatives needed by the Taylor polynomial for an mth-order accurate scheme
is ½ðmÞðmþ 1Þ=2!� in 1-D. In 2-D, it would be ðmÞðmþ 1Þ mþ 2ð Þ=3!½ �. Although this is not a global memory requirement (be-
cause time derivatives need not be saved), this will likely be a source of memory pressure for accelerator devices such as
Graphics Processing Units (GPUs). Depending upon the size of local memory stores on a given accelerator, there will be a
point of diminishing returns as the number of moments is increased. The expense of the C-K procedure is known to grow
exponentially for a generic PDE system because of the expansion of derivative product and chain rules [12]. Therefore,
the ADER scheme is typically very expensive at high-order accuracy for non-linear problems.
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2.3. Computing space–time derivatives with differential transforms

To reduce the expense of computing time derivatives in the C-K procedure for higher spatial dimensions and more com-
plex flux and source functions, we use a technique based on transforming the differential equation into a recurrence relation
for the coefficients of its power-series solution. This technique is well known to the creators of automatic (or algorithmic)
differentiation software [13], and recent literature often refers to it as the Differential Transform Method (DTM) [14]. The
differential transforms (DTs) exhibit polynomial complexity and make evaluating the C-K procedure concise and efficient.
The DT of a function f ðx; tÞ is given as [15]
Fðk;hÞ ¼ 1
k!h!

@kþhf ðx; tÞ
@xk@th

�����
x¼x� ;t¼t�

;

and the inverse is a straightforward polynomial (Taylor series):
f ðx; tÞ ¼
X1
k¼0

X1
h¼0

Fðk; hÞ x� x�ð Þk t � t�ð Þh:
These transforms have been applied to most common arithmetic operators and functions by various authors. The transforms
we used in this study are in Table 1. A comprehensive list is available in [13].

Using the rules from Table 1, we transform the time–space PDEs into recurrence relations that relate a given spatiotem-
poral derivative to lower-order derivatives. In this manner, high-order space–time derivatives are obtained in polynomial
complexity (a function of the number of spatial moments) from at full set of space-only derivatives.

We found that for Burger’s equation, the DTM gave comparable runtime results as direct output from symbolic mathemat-
ical software. For the shallow-water (SW) model, however, the total output from symbolic mathematical software for the C-K
procedure at eighth-order accuracy was thousands of lines long in Fortran which we consider unacceptable for sustainable
software development practices. In addition, even modern compilers have trouble performing common subexpression elim-
ination and other optimizations on such verbose expressions. In this case, the direct output was also over five times slower
than using DTs. We believe the large expression size of direct output from symbolic mathematical software and high compu-
tational expense (especially when performed at every quadrature point in space) is a major reason that most ADER studies
have not proceeded beyond fifth- or sixth-order accuracy for non-linear PDEs. Using DTs, one can proceed to any order of
accuracy without much coding effort, and computational expense is decreased.

The 1-D SW system (with terrain) stated in terms of components of the state variable vector is:
@

@t
u1

u2

� �
þ @

@x

u2

u2
2

u1
þ u2

1
2

" #
¼

0
�u1

@/B
@x

" #

where u1 ¼ / is the geopotential thickness, u2 ¼ /u is ‘‘momentum’’ (with u being wind), and /B is geopotential of bottom
orography. These terms are explained more in Section 4.1. Its DT is given by:
U1ðk;hþ 1Þ ¼ � kþ 1
hþ 1

U2ðkþ 1; hÞ

U2ðk;hþ 1Þ ¼ � kþ 1
hþ 1

G1ðkþ 1;hÞ � kþ 1
hþ 1

G2ðkþ 1; hÞ � 1
hþ 1

G3ðk; hÞ
where the auxiliary functions are given by:
G1ðk;hÞ ¼
Xk

r¼0

Xh

s¼0

G1;aðr; sÞG1;bðk� r;h� sÞ

G2ðk;hÞ ¼
1
2

Xk

r¼0

Xh

s¼0

U1ðr; sÞU1ðk� r;h� sÞ
Table 1
Differential transforms of the functions encountered in this study. c is a constant in space and time.
Uð0;0Þ is the function uðx; tÞ itself, and the terms causing F to depend on itself in the last transform
should be omitted during summation.

Rule Original function Differential transform

1 f ðx; tÞ ¼ cuðx; tÞ Fðk; hÞ ¼ cUðk;hÞ
2 f ðx; tÞ ¼ @iþjuðx;tÞ

@xi@tj
Fðk; hÞ ¼ kþið Þ!

k!
hþjð Þ!

h!
U kþ i;hþ jð Þ

3 f ðx; tÞ ¼ uðx; tÞvðx; tÞ Fðk; hÞ ¼
Pk

r¼0
Ph

s¼0Uðr; sÞVðk� r;h� sÞ
4 f ðx; tÞ ¼ 1

uðx;tÞ Fðk; hÞ ¼ � 1
Uð0;0Þ

Pk
r¼0
Ph

s¼0Uðr; sÞFðk� r; h� sÞ
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G3ðk;hÞ ¼
Xk

r¼0

U1ðr;hÞG3;aðk� rÞ

G1;aðk; hÞ ¼
Xk

r¼0

Xh

s¼0

U2ðr; sÞU2ðk� r; h� sÞ

G1;bðk; hÞ ¼ �
1

U1ð0; 0Þ
Xk

r¼0

Xh

s¼0

U1ðr; sÞG1;bðk� r; h� sÞ

G3;aðkÞ ¼ ðkþ 1ÞUBðkþ 1Þ
Note that this gives a method of obtaining the time derivatives by stepping forward in h starting from h ¼ 0, the spatial
derivatives which are either interpolated or explicitly evolved or a combination (e.g. Hermite methods). For efficiency,
G1;a, G1;b, and G3;a must be cached at each value of k and h so as not to be recomputed. The computational complexity grows
with p4 if p is the order of accuracy of the scheme. For the second equation, the terms involving G1 and G2 give the DT for the
flux, and the term involving G3 gives the DT for the source term. DTs of the terrain geopotential, /B, are precomputed because
they are constant in time. The DT for the flux term in Burger’s equation is given by G2. The DT of uniform linear advection
follows directly from Rule 1 of Table 1. Implementation details can be cumbersome in performing these summations. For this
reason, we include our Fortran 90 implementation for the SW case in Fig. 1.

2.4. State-expansion ADER scheme

How one utilizes the time derivatives from the C-K procedure varies. Here, we describe the state-expansion ADER ap-
proach for computing fluxes in 1-D. First, a reconstruction is sampled to obtain values and derivatives of the state vector
at left- and right-hand limits of each interface valid at the beginning of the time step:
UðkÞ;�
i�1

2
ðxi�1

2
; tnÞ; k ¼ 0;1; . . . ;m� 1
where UðkÞ ¼ @kU=@xk and m is the spatial order of accuracy of the scheme. From these, a non-linear Riemann solver is typ-
ically used to compute the interface state of U : Uð0Þ

i�1
2
¼ fRiemann Uð0Þ;�

i�1
2
;Uð0Þ;þ

i�1
2

� �
. For the Godunov state of derivatives of U, the

system is typically linearized to compute: UðkÞ
i�1

2
¼ f̂ Linear UðkÞ;�

i�1
2
;UðkÞ;þ

i�1
2

� �
for k > 0. Finally, the C-K procedure is used to compute

time derivatives of U from the spatial derivatives via the PDE definition. This gives a temporal Taylor polynomial eUi�1
2

tð Þ at

each interface, which is in turn used to compute the integrand of (3):
Fðxi�1
2
; sÞ ¼ FðeUi�1

2
ðsÞÞ:
For source term quadrature points within the body of a cell, the Godunov state does not need to be computed. Also, the tem-
poral Taylor series, eU x�; tð Þ (where x� is an arbitrary spatial quadrature sampling point), is formed by a local C-K procedure
and used to compute source terms in time.

The ADER scheme becomes expensive for higher-order temporal accuracy because the cost of each C-K procedure grows
exponentially with the order of accuracy for a general non-linear PDE system. Also, in the traditional ADER scheme, the C-K
procedure is performed at each spatial quadrature point. Given a problem in d spatial dimensions, the number of quadrature
points to compute fluxes and source terms grows as nd�1 and nd, respectively.

It is the compounding effect of performing the C-K procedure at all quadrature points that we are removing in the present
modification to reduce the cost of the ADER scheme. Instead of computing time derivatives at each quadrature point, we
compute them only at the cell center and form a space–time Taylor polynomial over the cell and time step domain. This poly-
nomial is then sampled at each space–time quadrature point. The reduction in overall cost requires that sampling a Taylor
polynomial be cheaper than performing the C-K procedure. This would likely be only true for non-linear systems because for
linear systems, the C-K procedure is largely pre-computed and is much less expensive. The savings associated with the single
space–time Taylor expansion will be smaller in 1-D with simple problems, but in 2-D with more complex non-linear fluxes
and sources, the savings are expected to be significantly greater.

2.5. How ADER-Taylor differs from traditional ADER

We first introduce the ADER-Taylor scheme by describing how it differs from the traditional state-expansion ADER
scheme. We propose two modifications. First, the C-K procedure is only computed once at the cell center, xi, to obtain time
and mixed space–time derivatives, which are then used to construct a space–time Taylor polynomial, UTayðx; tÞ. The space–
time Taylor polynomial is then sampled at quadrature points. Because of determining UTayðx; tÞ before computing Godunov
states at the interface, the interface fluxes must be computed in a different manner than with traditional ADER methods.



Fig. 1. Fortran 90 subroutine computing arbitrarily high-order space–time derivatives of state variables for the 1-D SW system using DTs.
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Therefore, the second modification is the handling of fluxes. Any flux function can be used for this purpose, but the flux
function must be performed at each quadrature point in time. In fact, this also decreases the number of Riemann solves
which must be performed because for Gauss–Legendre quadrature, the number of quadrature points is lower than the num-
ber of moments. The Local Lax Friedrichs (LLF) flux function would likely be a good choice in multiple dimensions in which
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the number of quadrature points grows dramatically with scheme order. In 1-D, this would limit the CFL number to 1/2 in-
stead of unity, but in 2-D or greater, the ADER scheme is limited to the linear multi-dimensional CFL limit of 1=d where d is
the number of dimensions. Therefore, the LLF flux would not limit the time step in multiple dimensions. Because this study is
in 1-D, and we wish to show that the MM-ADER scheme is stable to a CFL of unity, we use the linear Godunov (therefore,
upwind) state to keep the schemes stable at a CFL number of unity. The linear Godunov state is determined by locally freez-
ing the flux Jacobian for diagonalization using the fluid state interface average.

2.6. Description of the ADER-Taylor scheme

We start with the fully-discrete FV discretization (1). To update the cell-averaged state variable vector Ui, we need the
fluxes and source term (3) and (4). As mentioned earlier, we use Gauss–Legendre quadrature for the purposes of integration
in both space and time. Terms (3) and (4) now take the form
bFi�1=2 ¼
XnG

l¼1

x0leFðULðxi�1
2
; tn þ j0lDtÞ;URðxi�1

2
; tn þ j0lDtÞÞ ð5Þ

bSi ¼
XnG

l¼1

XnG

k¼1

xkx0lSðUðxi�1
2
þ jkDx; tn þ j0lDtÞ; xi�1

2
þ jkDx; tn þ j0lDtÞ ð6Þ
where nG is the number of quadrature points, j and j0 are integration points scaled to the domain ½0;1� for space and time
(respectively), x and x0 are convex integration weights for space and time (respectively), UL and UR denote limits approach-
ing an interface from the negative and positive direction (respectively), and eF is a flux function for the flux terms (linear
Godunov state in our case). If the reconstruction is mth-order accurate in time and space, only m=2d e Gauss–Legendre quad-
rature points need to be used. This is in contrast to a Discontinuous Galerkin scheme which typically requires as many quad-
rature points as there are moments (or polynomial basis functions) for the body integral.

We performed a von Neumann stability analysis on this formulation using the linear advection equation ut þ ux ¼ 0 with
Vandermonde polynomials up to 25th-order accuracy, and the scheme is consistently stable up to a CFL number of unity.
Because the scheme is stable with non-limited polynomial interpolants, it will also be stable with the WENO interpolants.

2.6.1. Time–space Taylor expansion of U
From here, the definition of Uðx; tÞ within the cell will close the scheme. We assume a reconstruction of arbitrary order

and definition, subject to the constraint that it render well-bounded values for U and up to nth-order derivatives of U at the
cell center. For accuracy purposes, we also constrain that the kth-order derivative when sampled at the cell center be accu-
rate to a truncation of Dxnþ1�k. Then, the C-K procedure provides up to nth-order time and mixed space–time derivatives. We
now have the following information valid at the cell center:
@kþlU
@xk@tl

�����
x¼xi ;t¼tn

8<:
9=; : 0 6 k; 0 6 l; kþ l 6 n
Using this information, we construct a space–time Taylor polynomial that is ðnþ 1Þth-order accurate in space and time.
The Taylor polynomial is sampled at integration points to provide the information necessary to compute (5) and (6). Sam-
pling the space–time Taylor series actually becomes quite expensive because of the quadratic growth of space–time terms in
1-D. Further increasing the expense in the multi-moment case is that we have to sample all derivatives from the space–time
Taylor series. The Taylor polynomials are sampled on a rectangular space–time grid to compute fluxes and source terms at
quadrature points. Because of this, we can reduce the polynomial sampling expense by splitting the Taylor evaluations into
spatial and temporal computations:
U x�; t�ð Þ ¼
X

k

X
l

1
k!l!

@kþlU
@xk@tl

x� � xið Þk t� � tnð Þl ¼
X

l

X
k

ak;l x� � xið Þk
 !
Looping in this manner, the coefficients ak;l can be computed at the beginning of each temporal quadrature point and
remain constant until the next temporal quadrature point. Furthermore, since the expression in the innermost summation
is in the form of a differential transform, we can use values directly obtained from the DT procedure for obtaining space–time
derivatives. Finally, to efficiently compute all spatial derivatives at a given point from the coefficients ak;l, we use a modifi-
cation of [16] given as Fortran 90 code in Fig. 2. The switch (multFac) to keep factorials out of the derivative expressions
(essentially keeping them in the form of DTs) is useful when these samples feed directly into a routine computing flux deriv-
atives via DTs.

2.6.2. Computational aspects of ADER-Taylor
We would like to review the competitive computational aspects of this scheme. The scheme is fully-discrete, meaning

there are no stages involving inter-node parallel communication within a time step, which keeps communication overhead



Fig. 2. Fortran 90 code for function derivatives to compute all derivatives at point x0 of a polynomial defined by: pðxÞ ¼
Pn

i¼0aixi . The array fac ið Þ is the
factorial of the integer i. The switch multFac allows the user to keep factorials out of the result so that the derivatives are differential transforms.
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low. Second, the ADER approach fully couples multiple spatial dimensions (for the future multi-dimensional extension) and
source terms to reduce the parallel communication overhead even further compared to operator splitting methods for these
components. Third, the scheme runs stably up to a CFL number of unity regardless of the order of accuracy in space or time or
how many moments are evolved per cell. This is in contrast to Galerkin methods whose MSTS reduces superlinearly as more
moments are simulated per cell. Finally, the modification to reduce the number of C-K computations via a Taylor series also
gives a boost in efficiency by reducing the cost of the scheme.

For multi-moment FV ADER methods, the MSTS remains constant during p-refinement and decreases linearly with
h-refinement. Therefore, it is better regarding the time step to perform p-refinement for the MM-ADER approach whereas
it is worse for explicit Galerkin methods.

3. Multi-moment ADER-Taylor methods

The advantage of using multiple moments in a FV framework is that the MSTS does not depend on the number of mo-
ments or the spatial order of accuracy, giving significantly larger time steps than explicit Galerkin methods for non-linear
systems of conservation laws. For the multi-moment ADER scheme, we need a framework for evolving higher-order mo-
ments (derivatives of U). For this, we choose to use the same FV approach used for U itself.

We spatially differentiate the PDE to give:
@

@t
@mU
@xm
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Integrating over a space–time domain, applying the divergence theorem, and computing integrals via quadrature give the
same FV framework used for U itself. Now, we have new flux and source terms:
@mF
@xm
� FðmÞðfUðkÞgk¼0...mÞ

@mS
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to provide a FV framework for derivatives of U of the form:
UðmÞi;nþ1 ¼ UðmÞi;n � Dt
bFðmÞ
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� bFðmÞ
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Dx
� bSðmÞi

0@ 1A

For the new flux terms (spatial derivatives of the original flux terms), we use differential transforms based on the known
derivatives of U.

From here, derivatives of UTayðx; tÞ feed into the higher-moment flux and source terms to complete the scheme. To show
the range of options within the multi-moment ADER-Taylor framework, we implement three classes of methods:

1. Fifth-order accurate single-moment ADER-Taylor method using the WENO reconstruction of [17] (abbreviated as
‘‘WENO’’)
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2. Fifth-order accurate two-moment ADER-Taylor method using a Hermite WENO reconstruction (modified from [4])
(abbreviated as ‘‘HWENO’’)

3. Entirely local multi-moment ADER-Taylor methods which explicitly evolve all moments (abbreviated as
‘‘MM-Loc’’)

The MM-Loc scheme is implemented at up to 16th-order accuracy in space and time for all experiments in order to deter-
mine the nature of error reduction with increasing moments. We do not necessarily believe that a 16th-order accurate
method will be the most useful but want to show the properties of these methods over a large range of p-refinement.

The MM-Loc approach is similar in nature to a modal expansion such as the modal Discontinuous Galerkin method.
Because of this, we believe that relatively minor modifications to the numerical machinery developed to limit modes in a
DG scheme (e.g. [18,6,5,19]) should also sufficiently limit the MM-Loc scheme. Moreover, we also see no reason why the hy-
brid RKDG+HWENO philosophy should not also work here as well.

3.1. Multi-moment ADER-Taylor Hermite WENO method (HWENO)

For this method, we evolve the cell mean value Ui and cell mean derivative Uð1Þi and use them to reconstruct a fifth-order
accurate limited polynomial using a 3-cell stencil (nearest neighbor spatial dependence). WENO accuracy ranges from low-
to high-order depending upon the smoothness of the flow.

In general, two types of WENO procedures appear in literature. Type 1 (e.g., [20]) is for situations where the WENO inter-
polant is sampled at points known beforehand. These methods pre-compute optimal weights such that the weighted com-
bination of the low-ordered interpolants renders the higher-order interpolant value at one specific point. In the time
stepping the higher-order interpolant is never actually formed because the optimal weighting of lower-order values renders
the higher-order value at a point. These weights are a function of the grid geometry and point location only (not of the data
itself), and they are altered from optimal values based on the smoothness of the flow such that the least oscillatory stencils
are weighted the most.

Type 2 (e.g., [17]) is for situations in which either the interpolation points are not known beforehand or a continuous lim-
ited function is needed perhaps for analytical integration over an interval or, in our case, to have access to all spatial deriv-
atives to high-order accuracy. Type 2 WENO methods explicitly form the optimal polynomial as well as the lower-ordered
polynomials during the time stepping. A set of weights are chosen by the user. Then what we term a ‘‘bridge’’ polynomial is
formed such that the weighted combination of the lower-ordered polynomials with the bridge polynomial renders the opti-
mal polynomial. The weights chosen by the user (an added parameter range to control smoothness) are then altered based
on flow smoothness to limit the interpolant. Type 2 WENO methods render interpolants that are continuous and limited
across the intersection of all candidate polynomial stencils.

In the ADER-Taylor approach, in order to have an mth-order accurate method in space and time, we need up to ðm� 1Þth-
order spatial derivatives valid at the cell center. Using the Type 1 WENO method, there is no interpolant formed of high
enough order to obtain these derivatives because the optimal polynomial is never formed. Thus, it is simplest to use the Type
2 method wherein the optimal polynomial is formed, and all needed derivatives are immediately available. This is why we
chose to use the WENO procedure of [17] for our WENO methods. We did formulate a method based on Type 1 WENO inter-
polation, sampling at multiple points within a cell, and using those points to constrain a high-order limited polynomial, and
it was successful. However, we found using a Type 2 method to be far more flexible in controlling smoothness versus accu-
racy, and thus, we obtained greater accuracy. Also, the Type 2 approach was computationally cheaper because we did not
have to sample at five points and reconstruct a polynomial from them.

For the HWENO procedure, we do not use the method of [21] because though it successfully implements a non-oscillatory
HWENO method, the reconstruction can reduce to first-order accuracy at discontinuities in some cases. As mentioned in that
study, this is not a problem for shocks which are reinforced. However, other discontinuities, which are not necessarily rein-
forced, can become excessively diffused.

Therefore, we alter the method of [21] by ridding the center cell’s first derivative from all reconstructions. This reduces
the optimal and sub-optimal stencils by one order of accuracy, meaning this interpolation will range from third- to fifth-
order accuracy. The four polynomials used in this HWENO procedure obey the following constraints:
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The ‘‘bridge’’ polynomial is formed by PBrg;iðxÞ ¼ ðPOpt;iðxÞ �
P

kxkPk;iðxÞÞ=xBrg where k 2 fL; C;Rg. We choose the weights such
that the bridge polynomial carries 16 times the weight of the lower-ordered stencils: fxL;i;xC;i;xR;i;xBrg;ig ¼ f1;1;1;16g=19.
Our process for determining these weights was to increase the weight of the bridge polynomial by powers of 2 until accuracy
no longer increased significantly. Then numerous simulations with the shock experiments were performed over long periods
of time and a variety of CFL values and refinements to ensure the scheme was reliably limiting all oscillations. Users can tune
these parameters to the needs of their applications. For instance, if strong shocks in the vicinity of near-zero air densities
were being simulated, one would use a lower optimal weight for the bridge polynomial and possibly a larger exponent to
the Total Variation (TV) values described in the next paragraph.

We compute the TV across all derivatives of each candidate stencil over the center cell:
TVk;i ¼
1
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The optimal weights chosen by the user are then altered by an inverse power of the TV values for each stencil:
x0k;i ¼
xk;i

TVp
k;i þ �

: k 2 L;C;R;Brgf g
where we use p ¼ 2 (yet another parameter that can be tuned for smoothness) and � is a small number to avoid dividing by
zero. To limit polynomials, one must constrain p > 0, and p ¼ 2 is the most common choice in literature. Finally, the weights
are mapped to the domain ½0;1�:
ck;i ¼
xk;iP

lxl;i þ �
: k; l 2 fL; C;R;Brgg
The final interpolant is given by a combination of candidate polynomials:
PWENO;iðxÞ ¼
X

k

ck;iPk;iðxÞ : k 2 fL;C;R; Brgg
An important part of this process is that the cell-averaged derivative, Uð1Þi , must be replaced with the cell-averaged derivative
of the resulting HWENO interpolant:
Uð1Þi  
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There are three advantages computationally for WENO and HWENO methods as compared to MM-Loc. First, WENO is a
more adaptive method of controlling oscillations than a popular alternative: hyperdiffusion. It is robust enough to control
shocks and retains optimal accuracy in smooth portions of the flow while hyperdiffusion indiscriminately damps small-scale
modes throughout the domain. Second, the expense of the WENO procedure is offset some by the reduction in operation
count for sampling and flux/source term computations. For WENO, only the first moment of the state is sampled and only
the first moment of the flux and source functions is computed. Similarly for HWENO, only two moments are sampled and
computed. Third, because there are fewer moments within cells to exchange in parallel, the volume of inter-node commu-
nication will also be reduced. Finally, we will show that HWENO accuracy is equal or better than fifth-order MM-Loc accu-
racy for smooth flows, a surprising but not unique finding [6].

For systems of equations, it is generally best to use the same WENO weights for all dynamical variables. For the SW sys-
tem of equations, we reused the weights computed for / to limit /u. In fact, for any system of equations with a similar Rie-
mann structure to the Euler equations of gas dynamics, reusing the WENO weights of the density-type variable for all other
dynamical variables is a stable choice. The reason is that shock, rarefaction, and contact discontinuities all show up in the
density field Riemann solution, while only a subset show up in the other dynamical fields. Therefore, the density WENO
weights are a conservative choice for limiting the entire system with the same WENO weights. There are other methods
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of homogenizing the WENO weights for a system of equations such as computing a norm over all variables (see [22,23]), but
using the density-type variable’s weights for all other components is a smoother choice. Also, reusing density weights is the
least computationally expensive.

Many WENO studies involving hyperbolic systems transform the state variables into Riemann invariants, apply the
WENO limiting there, and then transform back into limited state variables. This is known to be a smoother and more robust
method of applying WENO limiting to hyperbolic systems, but it is an expensive procedure. We found no need to do this for
the experiments in this study, but nothing precludes this treatment in the multi-moment FV ADER framework for more chal-
lenging flows.

We also save some computational effort by reusing weights. However, when most studies mention the expense of the
WENO procedure being in the computation of weights, they are referring to Type 1 methods for which the polynomial coef-
ficients are only computed to compute WENO weights. Computing the actual polynomial coefficients is the majority of the
expense of computing limited weights, and this is the reason Type 1 WENO studies consider it expensive to compute WENO
weights. For Type 2 methods, the polynomial coefficients are already computed, and therefore computing WENO weights is a
relatively small overhead. So the computational savings associated with reusing weights for the WENO and HWENO meth-
ods used herein are smaller than they would be for a Type 1 WENO method.
3.2. Local multi-moment ADER-Taylor method (MM-Loc)

In this method, we evolve all moments explicitly using derivatives of the flux and source terms (computed with differ-
ential transforms), giving the spatial locality of Galerkin schemes. We implement this method at up to 16th-order accuracy
in space and time for all test cases.
3.2.1. Linear analysis
We performed a von Neumann stability analysis on MM-Loc using the 1-D linear advection equation, ut þ ux ¼ 0, to verify

that an n-moment method is always stable up to a CFL value of unity. Beyond a CFL value of unity, these methods are unsta-
ble except for the spatially uniform case for which the stability is neutral. The linear analysis was performed up to a 25th-
order accurate method, and direct numerical experimentation confirms stability for up to 16th-order accurate methods
when the data is smooth.
3.3. Review of multi-moment ADER-Taylor algorithm

To review the process of multi-moment ADER integration, we give the following algorithm for a single time step.

1. (Comm) Exchange any halo regions required for reconstruction (not necessary for MM-Loc)
2. Reconstruct a spatial polynomial, PiðxÞ, over the cell from available moments
3. Sample reconstruction values and derivatives at the cell center @ðmÞx U xið Þ
4. Perform C-K procedure to obtain time and mixed space–time derivatives valid at the cell center and beginning of the

time step: @ðmÞx @
nð Þ

t U xi; tnð Þ
5. Use space–time derivatives at the cell center and beginning of the time step to construct a time–space Taylor polyno-

mial: PTay;iðx; tÞ
6. Sample PTay;iðx; tÞ at cell boundary quadrature points in time (later used for flux computations)
7. (Comm) Exchange boundary values and derivatives of U with neighboring cells
8. Compute source term, S, by sampling PTay;iðx; tÞ at source term quadrature points in space and time
9. Compute interface fluxes using positive and negative limits of U and its derivatives at the interface

10. Perform the cell update using the source term and fluxes

The exchange of boundary values of U and its derivatives in step 7 can be overlapped with the source term computation in
step 8 to hide some of the communication time. Steps involving inter-process communication are prefixed with ‘‘(Comm)’’.
4. Numerical experiments

We test these schemes using a variety of 1-D problems including linear advection, Burger’s equation, and a 1-D SW model
with terrain. At the moment, MM-Loc is not limited spatially. The development of the HWENO scheme demonstrates that
limiting the modes in MM-Loc will also limit the time derivatives satisfactorily to produce a non-oscillatory simulation in
the presence of shocks. Therefore, we feel that the development of a hybrid HWENO mode-limited scheme can be left to fu-
ture study without loss of any novel exploration of the MM-Loc scheme’s intrinsic properties. Simple modifications of [24] or
[5] would likely give rise to such a scheme. Therefore, for MM-Loc, we only simulate smooth flows to determine the error
convergence with increasing moments and decreasing grid spacing. Since all schemes herein are stable up to a CFL value
of unity, we run all test cases with a maximum CFL value of 0.9 or greater.
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There are five experiments in all. First, linear advection, ut þ ux ¼ 0, experiments will be performed by initializing (via 16-
point Gauss–Legendre (GL) quadrature) with a one-period sine wave, ðsinð2pxÞ þ 1Þ=2, on a domain of 1 m and revolving it
cyclically around the domain 10 times with an advecting speed of 1 m s�1. This test case is used to compute error norms for
comparison. In order to do this, we stop the model at the ceiling of 10 s divided by the time step. The ‘‘analytic’’ cell means
are computed with 16-point GL quadrature applied to a translation of the initial conditions to ensure compatibility with the
final state and position. Error norms are computed by the cell means as follows:
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where �ui;numer and �ui;anal are the numerical and analytical cell means, respectively.

Second, Burger’s equation, ut þ u2=2
	 


x ¼ 0, will be simulated with the WENO and HWENO methods on a domain of 1 m,
initialized (again via 16-point GL quadrature) with the same one-period sine wave as the linear advection experiment. It will
be simulated to a time of t ¼ 0:5 s at which point a shock will have formed to test the oscillatory properties of the WENO and
HWENO schemes. The rest of experiments are SW experiments described in further detail in Section 4.1.

When we perform experiments for h- and p-refinement, we always use the MSTS. It is true that if we are interested purely
in the spatial aspects, that we should reduce the time step to very small CFL values in order to guarantee that only spatial
convergence is manifesting. We believe the steady state SW simulations should suffice for this purpose. However, we are not
most interested in purely spatial or theoretical viewpoints in this paper, but rather in real applications. At least in the climate
field, one would not run an explicit integration method at a time step many times smaller than the MSTS. Therefore, as we
refine the grid or the moments, we always use a time step close to the MSTS to ascertain convergence properties in a realistic
context.

4.1. 1-D SW model test case

The conservation form of the SW equations in 1-D are as follows:
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where /ðx; tÞ ¼ ghðx; tÞ is the geopotential thickness of the fluid, hðx; tÞ is the fluid thickness in meters, g ¼ 9:80616 m s�2 is
acceleration due to gravity, uðx; tÞ is the wind velocity, and /BðxÞ is the geopotential height of bottom orography. The free
surface fluid geopotential height would be given by /fsðx; tÞ ¼ /ðx; tÞ þ /BðxÞ. The simulation domain is similar to the radius
of the Earth, X 2 ½0; L� with L ¼ 4� 107 m.

For the sake of converging to a steady state and ensuring that no shocks develop, this equation set is subjected to Dirichlet
boundary conditions: /ð0; tÞ ¼ /ðL; tÞ ¼ /0 ¼ 105 m2 s�2 and uð0; tÞ ¼ uðL; tÞ ¼ u0 ¼ 20 m s�1. This value of the geopotential is
specified to simulate motions of the external atmospheric vertical mode, and it leads to a gravity wave speed on the order of
300 m s�1. These test cases are unique compared to linear advection and Burger’s equation because they introduce both a
system and a source term. We will always use the following Gaussian terrain:
/BðxÞ ¼ /B;0e�
x�xC

wð Þ2
where xC ¼ L=2, /B;0 ¼ 104 m2 s�2, and w ¼ L=10. We initialize the model with /ðx;0Þ ¼ /0 and uðx;0Þ ¼ u0, and the Dirichlet
boundary conditions cause the transient motions to converge to a steady state before any shocks are allowed for form. The
third test case we use is a transient SW solution taken at time t ¼ 3� 104 s. Plots of the solution at t ¼ 3� 104 s are given in
Fig. 3(a).

As a reference for error norms, we compute the solution with a 16-moment MM-Loc scheme with 4000 points. In order to
ensure that each model run, regardless of CFL number or time step, ends at exactly t ¼ 3� 104 s, the last time step is reduced
to bring the total model time to exactly this value. This means the last CFL number may be small for the last step. This would
act to the advantage of a Runge–Kutta (RK) scheme, which will be discussed later, and to the disadvantage of the ADER
schemes because the RK solution, dominated by temporal error, becomes more accurate with smaller time step while the
ADER schemes become more diffusive with smaller time steps.

The fifth test case is to change the boundary conditions to cyclic and allow shocks to develop. For this test case, we ini-
tialize exactly like the transient SW test case above, meaning there is a Gaussian ridge in the free surface geopotential height
at the domain center (due to terrain) that will propagate outward. These traveling waves will steepen and eventually form



Fig. 3. Plots of SW solutions for transient and steady state cases.
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shocks which can further test the WENO and HWENO schemes within the context of a system with a source term. We stop
the shock simulations at a time of 2:55� 105 s for plotting, though they have been tested for much longer periods of time to
ensure robustness.
4.1.1. Steady-state solution
Additionally, we specify a steady-state case by setting the time derivatives to zero, giving:
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The first constraint implies that the ‘‘momentum’’, /ðxÞuðxÞ ¼ M0 � /0u0, is spatially uniform. Substituting this into the sec-
ond constraint, we now have one boundary value ODE of one unknown with two boundary conditions:
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/ð0Þ ¼ /ðLÞ ¼ /0
To solve this, we integrate the constraint over computational cells to place it into FV form and discretize spatially with piece-
wise linear functions. We then use a tridiagonal linear solver wrapped inside a Newton iteration with a convergence criterion
of 10�12 relative tolerance. In practice, the spatially uniform momentum, M0, serves as an easier measure for accuracy when
computing error norms since the constant value is accurate to machine precision, and we find similar results with each
approach.
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There will be numerical imbalance between the body source term and the interface fluxes. Comparing against the accurate
initial data, we can obtain robust comparative error measures in order to compare each method’s handling of the system at
steady state. Also, this gives a good estimate of convergence with grid and moment refinement. The solution to (8) qualita-
tively looks like /ðx;0Þ ¼ /0 � /BðxÞ, that is a uniform free surface geopotential, when viewed at scale, but this is not the actual
solution due to the M0=/ term arising from the fact that this is not an infinite domain experiment. See Fig. 3(b) for a zoomed
view of the free-surface geopotential in steady state. It must be solved non-linearly to get full accuracy at steady state on the
finite Dirichlet-bounded domain.

4.2. Runge–Kutta Discontinuous Galerkin method for comparison

To provide a reference for accuracy from a comparable type of scheme that is common in literature, we include a three-
stage Strong Stability Preserving (SSP) Runge–Kutta (RK) modal Discontinuous Galerkin (DG) method with a spatial order of
accuracy varying from 1 to 16. For a detailed description of the scheme in 1-D, please see [25]. For discretization of the source
term for the 1-D SW system, we perform a straightforward extension of the scheme by multiplying the test function to the
source term and integrating, thereby using a mapping of the source term to the Legendre basis functions for time evolution.

We found that this RKDG scheme is dominated by temporal error when the MSTS is used due to the RK time integrator.
Results from this method and that of Section 4.3 demonstrate that the RK integrator itself has the property of being more
accurate at smaller time steps. This is in contrast to the ADER implementations which exhibit the property of being more
accurate at time steps closer to unity. As the RK time step is reduced to sufficiently low values, the error converges
super-exponentially with p-refinement for DG, and the polynomial convergence with h-refinement is larger than the order
of the polynomials denoting, again, super-convergence. For realistic simulations, however, the MSTS will be used, meaning
temporal error will dominate after roughly third-order accuracy. Linear analysis and numerical experimentation show that
the MSCFL value for this RKDG scales close to
CFLmax ¼minð1;1:318p�1:672Þ ð9Þ
where p is the number of moments. We use Dt ¼ 0:8Dx CFLmax=cmaxð Þ in all RKDG experiments herein, and we provide the
maximum initial wave speed, used as cmax, so that the user may compute the RKDG time step used in each simulation.
We do not use an adaptive time step. Rather, we use a constant time step such that the maximum CFL number during
the simulation is close to CFLmax. Time steps will not play a significant role for the steady-state SW test case, and the RKDG
scheme is expected to converge significantly faster because of the DG spatial accuracy.

This RKDG scheme is not fully representative of other potential RKDG (or SE) schemes because the RKDG MSCFL value is
dependent on the quadrature of the DG scheme and the type of RK scheme used [26]. Generally, for a fixed RK integration
method, the larger the time step used, the lower the accuracy. Therefore a comprehensive comparison of overall effective-
ness incorporating accuracy, MSCFL value, computational effort per time step, local memory requirements, and number of
stages is no simple task even within RKDG methods themselves, much less between RKDG methods and the methods in this
study. Still, we wish to provide the reader with some reference point for accuracy and runtime comparison.
4.3. Runge–Kutta multi-moment FV method for comparison

In Section 2.2, it was mentioned that locally storing the nðnþ 1Þ=2 space–time derivatives (where n is the number of mo-
ments) could cause some difficulties at very high n with the limited local memory stores on accelerator devices, such as
Graphics Processing Units (GPUs), being included on modern computing platforms. In light of this, it is natural to consider
whether a similar method with lower local memory requirements might be competitive. Therefore, we implemented a SSP
RK analog of the MM-Loc scheme wherein we still evolve all moments via derivatives of the flux and source vectors but use a
RK integrator instead of ADER. We label this scheme RK-MM-Loc, and its time stepping only requires storing the n deriva-
tives that are explicitly evolved, and the MSTS still remains constant during p-refinement.

We will show that RK-MM-Loc fails in terms of accuracy, mainly due to temporal errors. As the scheme undergoes
p-refinement, the spatial error decreases rapidly as it does also in the DG and MM-Loc schemes. However, unlike the RKDG
scheme, the MSTS remains at unity because it is a multi-moment FV scheme. For the SSP RK3 time integrator we use (same
as RKDG), temporal error dominates quickly as p-refinement increases because of the size of the time step. While we report a
similar phenomenon for the RKDG scheme, the RKDG MSTS decreases as the number of moments increases. Therefore the
error is significantly lower for RKDG, and p-refinement still adds value to the simulation in terms of error. When p-refining
the RK-MM-Loc scheme, the error does not decrease significantly past sixth-order accuracy.

To obtain a benefit from p-refinement (or h-refinement at high-order spatial accuracy) at very high orders of accuracy for
the RK-MM-Loc scheme, one must either decrease the time step with p-refinement or improve the accuracy of the RK
scheme, which means more stages. In a distributed-memory setting, either option results in increased inter-node commu-
nication in parallel, the very attribute we wish to minimize. Though RK-MM-Loc is not a viable scheme for higher-orders of
accuracy without a much more accurate RK integrator, comparing MM-Loc against RK-MM-Loc serves to highlight the excel-
lent accuracy that the ADER time integration achieves in general for such a large (near unity) fully-discrete time step. This is
because the time integration remains at the same order of accuracy as the spatial as all components of the PDE are evolved
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together to high order over the length of a time step. We believe this makes the MM-Loc scheme unique in that it is highly
accurate at quite large time steps compared to Galerkin schemes and achieves this accuracy in a fully-discrete manner.

4.4. Discussion of accuracy

L1 error norms for linear advection, transient SW, and steady-state SW test cases as well as a solution plot of the SW and
Burger’s equation shocks for the WENO and HWENO schemes are plotted in Figs. 4–12.

4.4.1. Linear advection
For MM-Loc, WENO, and HWENO, we use the relation CFL ¼ Dt=Dx ¼ 0:95 to compute the time step in each linear advec-

tion simulation. For linear advection, WENO, HWENO, and MM-Loc achieved h-refinement convergences of 5.00, 5.00, and
4.96, respectively. Surprisingly, MM-Loc and WENO errors were very similar; and at the higher refinements, HWENO error
was five times less than MM-Loc and WENO in all error norms. The RKDG method shows exactly third-order h-convergence
even though five moments are used. This is due to the third-order accurate temporal discretization and the fact that the
MSTS is used as the grid is refined. This convergence shows that this RKDG error is dominated by temporal truncation. To
achieve full fifth-order accurate convergence using the MSTS, one would need to use a fifth-order accurate RK integrator
or decrease the time step more rapidly with spatial refinement.

For the p-refinement tests, we show refinement for two grid sizes: 25 and 100 cells. Again, because the MSTS is used, the
RKDG scheme does not see full exponential p-refinement convergence even though it is super-convergent spatially. In fact,
for the first few moments in p-refinement, the RKDG scheme undergoes rapid convergence, and past three moments the con-
vergence relaxes from exponential to a polynomial convergence. Curiously, the polynomial convergence follows a p5 power
law past three moments for both 25 and 100 cells. The MM-Loc scheme exhibits exactly exponential convergence until ma-
chine precision effects come into play, though this convergence is slower than that initially shown by RKDG. Because of this,
there is a range of p-refinement for which RKDG is more accurate. However, after break-even points of roughly p ¼ 7 and
p ¼ 5 moments when using 25 and 100 cells (respectively), MM-Loc is more accurate. As more cells are used, this break-even
point occurs at a lower number of moments. Exponential convergence for MM-Loc shows that the ADER time discretization
keeps temporal error from dominating overall truncation, allowing expected convergence with spatial refinement even with
a MSTS that remains constant with p-refinement in a fully-discrete treatment.

4.4.2. Burger’s equation shock
For WENO and HWENO, we use the relation CFL ¼ Dt=Dx ¼ 0:95 to compute the time step in each Burger’s equation sim-

ulation. Fig. 6 shows solution plots of Burger’s equation after a shock has developed. This is to demonstrate that the WENO
and HWENO limiting is working appropriately. We have run Burger’s equation over a variety of less-than-unity CFL numbers
for up to 5 s with no signs of developing oscillations. We clip the y-axis for clarity, leaving off the minima in first derivative
which are limited to �27.3 in the numerical solutions. Note that neither the value nor derivative are exhibiting oscillations.
Plotting points plotted along the shock shows that the HWENO solution is less diffused than WENO.

4.4.3. Transient SW
For WENO, HWENO, and MM-Loc, we use the relation CFL ¼ cmaxDt=Dx ¼ 0:93 to compute the time step in each simula-

tion, and cmax is considered to be the initial maximum wave speed: cmax ¼ u0 þ
ffiffiffiffiffiffi
/0

p
¼ 20þ

ffiffiffiffiffiffiffiffi
105

p
� 336:23. In Figs. 7 and 8,

we give h- and p-convergence plots for the transient SW test case as simulated by the WENO, HWENO, MM-Loc, RKDG, and
RK-MM-Loc methods. HWENO h-refinement convergence ranged form an initial 6.07 to a final 4.55 in our experiments.
Fig. 4. h-Refinement L1 error norm plots for the linear advection test case.



Fig. 5. p-Refinement L1 error norm plots for the linear advection test case.

Fig. 6. Plot of the WENO and HWENO values and HWENO derivative after simulating Burger’s equation initialized with a one-period sine wave up to t ¼ 0:5.
Blue boxes and magenta triangles show points along the shock for the WENO and HWENO values, respectively. The only visually discernible differences are
along the shock. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. h-Refinement L1 error norm plots for the transient SW test case.
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HWENO errors at the lowest refinement were an order of magnitude higher than MM-Loc, but they quickly become smaller
than MM-Loc due to relatively higher convergence rates. At 100 and 200 cells, all HWENO error norms were roughly two
times lower than MM-Loc, but at 400 cells, though HWENO L1 error was lower, the L1 error was five times higher. This
L1 behavior is not uncommon for limited functions as it generally denotes poorer handling of extrema in smoother cases
such as this SW test case.



Fig. 8. p-Refinement L1 error norm plots for the transient SW test case.

Fig. 9. h-Refinement L1 error norm plots for the steady SW test case.

Fig. 10. p-Refinement L1 error norm plots for the steady SW test case.
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MM-Loc showed an initial convergence of 4.00 and increased up to 4.73 at our highest refinement values. WENO consis-
tently gave a convergence of 5.02 to 5.05 throughout. RKDG again showed exactly third-order convergence throughout the
experiments, again due to the time discretization and dominating temporal error. After 100 cells, HWENO L1, L2, and L1 er-
rors averaged 6.0, 6.7, and 11.3 times lower than WENO error norms, showing that using more local moments helps improve
the largest errors the most in a WENO context.



Fig. 11. Plot of / after 2:55� 105 s of simulation of the SW equation set with cyclic boundaries.

Fig. 12. Plot of u after 2:55� 105 s of simulation of the SW equation set with cyclic boundaries.
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For p-refinement, we find that convergence rates are altogether lower than those found in the linear advection test case,
which is not surprising. Non-linear dynamics along with more sharply varying solution features and a source term give a
greater challenge for numerical methods. RKDG shows polynomial p-refinement convergence past three moments, again fol-
lowing a p5 power law. Though MM-Loc convergence is clearly sub-exponential, it is also super-polynomial when viewed in
log–log space. This means that with increasing moments, the exponential coefficient decreases, but the polynomial coeffi-
cient increases. Again, there is greater convergence with MM-Loc than RKDG, and therefore using 100 cells, MM-Loc is more
accurate after p � 6 moments.

The RK-MM-Loc scheme is also included in this test case to demonstrate the point that p-refinement does not add value to
the solution past the point where temporal error dominates. The RKDG does become more accurate with p-refinement past
three moments because the MSTS decreases by a power law based on the number of moments. Thus, with a lower time step,
the error continues to decrease. The RK-MM-Loc scheme does not share this property, but the MSTS remains at unity no mat-
ter how many moments are used. When undergoing p-refinement with a RK time integrator, one must either decrease the
time step or increase the order/accuracy of the RK integration. With the ADER time discretization, temporal error is
decreased without added stages or decreased time step.

4.4.4. Steady-state SW
These simulations use the same time step as in Section 4.4.3. We use the steady-state error norms for pure spatial refine-

ment considerations. Figs. 9 and 10 show error plots for h- and p-convergence of WENO, HWENO, MM-Loc, RKDG, and RK-
MM-Loc schemes for the steady-state SW test case. At the higher h-refinement levels, WENO error was consistently four times
lower than HWENO error, and MM-Loc error was in turn four to five times lower than HWENO error. RKDG error was clearly in
a different regime altogether, showing how good the spatial accuracy of a Galerkin method is and further demonstrating how
temporal error is dominating the overall RKDG numerical solution. HWENO h-convergence begins at order 5.6 but asymptotes
to fifth-order accuracy along with the rest of the methods except RKDG which exhibits superconvergence.

For p-refinement, values past 10 moments for MM-Loc using 25 cells are omitted because the simulation became unstable
in the absence of limiting. Also, RK-MM-Loc became unstable with 15 and 16 moments using 100 cells and those values are
omitted from the plots as well. RKDG shows exponential convergence down to the level of machine precision effects, and



Fig. 13. Plot of run times for RKDG and MM-Loc for the transient SW test case run with 1000 cells over a range of moments. Also plotted are HWENO and
WENO run times at the 5-moment location along the x-axis. All simulation times were performed on one core of a 2.7 GHz Intel processor with the GNU
Fortran compiler (gfortran) using the following optimization flags: ‘‘-finline-limit=2000 -O3 -msse4.2 -mfpmath=sse -fdefault-real-8 -funroll-loops’’. Power
regressions fitting the asymptotic tendencies of the run times are plotted.
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MM-Loc also shows exponential convergence as well but at a lower rate. We include the RK-MM-Loc scheme to show that
temporal error was indeed dominating the solution, since it exhibits exponential spatial convergence in the steady state at a
rate close to MM-Loc using the same number of cells.

4.4.5. SW shock formation
These simulations use the same time step as in Section 4.4.3. Figs. 11 and 12 give solution plots of the geopotential and

wind at 2:55� 105 s to demonstrate the limiting of WENO and HWENO within the context of a system of equations with a
source term. The line showing the exact solutions was a refined solution run with the HWENO method using 4000 cells to
show the structure between shocks more clearly. It is clearer in this case than in the Burger’s equation shock that HWENO is
diffusing the shocks less than WENO. Though we ran the simulations plotted at a maximum CFL value near 0.99, we have
tested for longer periods of time and other CFL values to ensure the oscillations are controlled and the method is robust.

4.5. Discussion of run times

Run times (CPU time in seconds) for all methods implemented in this study using the transient SW test case and 1000
cells are plotted in Fig. 13. We also plot a power law matching asymptotic runtime complexity with p-refinement. For all
methods, expected optimizations are made. Loops respect the column-major array addressing of Fortran, redundant compu-
tation is generally avoided, and all values that remain constant are pre-computed. This includes Legendre polynomial and
derivative evaluations at spatial quadrature points for RKDG and terrain sampling values and derivatives for all methods.
While run times may vary based on processor or compiler, we wish to give the reader some sense of how both accuracy
and run time of the WENO, HWENO, and MM-Loc schemes compare to a more familiar type of scheme.

RKDG, MM-Loc, and RK-MM-Loc run times grow with p3:42, p3:06, and p2:00, respectively. Though RK-MM-Loc shows only
quadratic complexity with increasing moments, accuracy does not improve without decreasing the time step or increasing
the number of stages which itself increases the overall complexity and increases parallel communication costs. At p = 4, 8,
and 16, MM-Loc in serial runs 5.0�, 6.4�, and 8.0� faster than RKDG. WENO and HWENO run 28% and 9% faster (respec-
tively) than MM-Loc. Though the WENO and HWENO reconstruction procedures are computationally expensive, the sam-
pling and flux/source term computation takes less work because only the value and/or derivative must be evolved.

Though MM-Loc is significantly more costly than RKDG per time step, many fewer time steps are taken because the CFL
remains at unity during p-refinement. Using the RKDG MSTS scaling relation from Section 4.2 and that there are three stages
per time step; at p = 4, 8, and 16, MM-Loc requires 23�, 74�, and 235� fewer stages of parallel communication than RKDG.
We believe that the increase in computation-to-communication ratio will lead to greater parallel efficiency, especially in ex-
treme strong scaling cases up to order 104 compute nodes. Given that these methods run faster in serial and that much better
parallel efficiency can be achieved, these multi-moment ADER methods may allow for further refinement for the same over-
all throughput. Thus, they are competitive options for further investigation in multiple dimensions and with more realistic
dynamics and grid topologies.

5. Conclusions and future work

We have introduced a new integration method for systems of conservation laws in one dimension with source terms by
combining the high-order-accurate, fully-discrete time integration of ADER methods, the spatial locality afforded by evolving
multiple moments per cell, and the constant CFL limit with p-refinement that the FV framework allows. Also, we modified
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the traditional ADER approach to reduce cost by performing the expensive C-K procedure only once at the cell center. Using
the Differential Transform Method for high-order space–time derivatives further reduces the cost of the C-K procedure, espe-
cially for complex flux and source functions. Though these multi-moment FV ADER methods are applied to hyperbolic con-
servation laws here, this is not a restriction of the scheme. It is applicable to the more general class of time-dependent PDE
systems with low enough stiffness to afford a time-explicit discretization.

These space–time derivatives then form a space–time Taylor polynomial over the cell which is sampled when needed.
Therefore, we call these methods ADER-Taylor methods. Sampling a Taylor series is cheaper than performing the C-K pro-
cedure, leading to a reduction in run time. Because multi-stage time integration is no longer needed and because of the larger
time step that does not reduce with added moments, the proposed methods require minimal communication for time-ex-
plicit integration. This also means computation is better clustered between fewer stages of communication which leads to
enhanced parallel efficiency on distributed memory architectures.

We implemented three methods to explore the multi-moment ADER-Taylor framework: (1) a single-moment WENO
ADER-Taylor method (abbreviated as ‘‘WENO’’), (2) a two-moment HWENO ADER-Taylor method (abbreviated as ‘‘HWE-
NO’’), and (3) an entirely local multi-moment ADER-Taylor method (abbreviated as ‘‘MM-Loc’’). MM-Loc requires no commu-
nication during the reconstruction phase, similar to Galerkin methods. For all methods, the time step remains bounded only
by the linear CFL condition which is unity in 1-D. This was verified both by linear analysis and experimentation. These meth-
ods were also tested with five experiments: (1) linear advection of a sine wave, (2) a shock with Burger’s equation, (3) a tran-
sient SW system, (4) a steady-state SW system, and (5) a SW shock formation.

The WENO and HWENO methods successfully limited oscillations for the shocks of Burger’s and SW equations, and this
supports the proposal that a hybrid scheme with the MM-Loc method in smooth regions and the HWENO method in so-
called problem cells could be an effective strategy for robust simulation of shocks and smooth regions. All schemes achieved
their desired order of accuracy during h-refinement. Also, during p-refinement for linear advection, the MM-Loc method
exhibited the expected exponential convergence. For the non-linear transient SW system, the MM-Loc method showed
super-polynomial yet sub-exponential convergence, and exponential convergence was shown for the steady-state SW sys-
tem. Particularly, this demonstrates that the source term and fluxes were coupled to the order of accuracy of the scheme
successfully by including the source term in the C-K procedure.

In comparison to a similar type of method in literature, the Runge–Kutta Discontinuous Galerkin method, the MM-Loc
method was often less accurate at low refinement levels. However, because of better h- and p-convergence rates for
time-dependent test cases when using the MSTS, MM-Loc accuracy usually surpassed RKDG after some refinement level.
MM-Loc was also significantly cheaper in serial and requires many fewer stages of parallel inter-node communications, lead-
ing us to believe that there is room to refine the MM-Loc method and still achieve the same overall runtime. For these rea-
sons, we believe the multi-moment ADER-Taylor-based methods may be competitive for time-explicit simulations on very
large distributed-memory computers.

In going forward with these methods, the most immediate considerations are limiting oscillations and multi-dimension-
ality in space. Because the scheme relies on a full tensor of multi-dimensional space–time derivatives, it should be applicable
to arbitrary unstructured meshes. A hybrid MM-Loc – HWENO scheme using troubled-cell indicators is likely a quick follow-
onto what is presented here. This may be challenging in a distributed parallel environment, however, because some process-
ing elements will have more troubled cells than others. This would likely lead to computational load imbalances. Also,
though literature exists for two-dimensional HWENO methods, it has room to grow, particularly in using derivatives of order
greater than one. Hyperdiffusion is another option, but it indiscriminately damps the entire grid. Also, it needs to be estab-
lished whether it should be performed in modal space or by transferring between modal and nodal expressions with stan-
dard finite-difference hyperdiffusion.

Work is currently being performed that removes the use of quadrature from the multi-moment, ADER-Taylor algorithm.
We are investigating the reuse of intermediate steps in the C-K procedure such that flux and source terms are directly
expanded using DTs, making them space-time polynomial expansions that may be sampled and integrated directly in space
and time with a simple vector dot product. Fluxes, in this manner, may be computed only once per time step using
time-averaged states to either diagonalize the PDEs for a linear Godunov state or compute a central flux such as local
Lax-Friedrichs. The future removal of quadrature is expected to provide much speed-up of the multi-moment, ADER-Taylor
algorithm and will be published in a future work.

Extending MM-Loc to very high-order accuracy in multiple spatial dimensions, though a straightforward task in theory
and implementation, will change the computational landscape, meaning different efficiency attributes compared to existing
methods in multiple spatial dimensions. The greatly reduced communication frequency will remain, but the serial runtime
compared to Galerkin schemes may change. The main difficulty in extending to multiple spatial dimensions, however, will
be the robust limiting of oscillations. We believe this task should be dealt with carefully, perhaps improving upon exiting
multi-dimensional HWENO methods and/or developing new ways to realize hyperdiffusion within the discretization.
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