
Journal of Computational Physics 274 (2014) 1–18
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

A WENO-limited, ADER-DT, finite-volume scheme for efficient, 
robust, and communication-avoiding multi-dimensional 
transport

Matthew R. Norman

Oak Ridge National Laboratory, PO Box 2008 MS6016, Oak Ridge, TN 37831, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 2 January 2014
Received in revised form 15 April 2014
Accepted 30 May 2014
Available online 5 June 2014

Keywords:
ADER
WENO
FCT
Differential transform
Finite-volume

The novel ADER-DT time discretization is applied to two-dimensional transport in a 
quadrature-free, WENO- and FCT-limited, Finite-Volume context. Emphasis is placed on 
(1) the serial and parallel computational properties of ADER-DT and this framework and 
(2) the flexibility of ADER-DT and this framework in efficiently balancing accuracy with 
other constraints important to transport applications. This study demonstrates a range of 
choices for the user when approaching their specific application while maintaining good 
parallel properties. In this method, genuine multi-dimensionality, single-step and single-
stage time stepping, strict positivity, and a flexible range of limiting are all achieved with 
only one parallel synchronization and data exchange per time step. In terms of parallel 
data transfers per simulated time interval, this improves upon multi-stage time stepping 
and post-hoc filtering techniques such as hyperdiffusion. This method is evaluated with 
standard transport test cases over a range of limiting options to demonstrate quantitatively 
and qualitatively what a user should expect when employing this method in their 
application.

Published by Elsevier Inc.

1. Introduction

Transport is an operation performed by a number of applications. Though described by a particularly simple PDE, the 
constraints on the numerical solution are rigorous. Not only must the method be accurate and economic in runtime, it must 
also be positivity preserving, shape preserving, and correlation preserving [1], and mass conserving. Correlation preserva-
tion means that the pre-existing spatial correlation between two tracers often needs to be preserved as both are evolved. 
However, some of these constraints are opposed to one another, requiring some measure of trade-off. Accuracy and shape 
preservation, for instance, are usually opposed to one another in that shape preservation often over damps the solution 
and clips extrema in smooth regions of flow. Finding a way to balance these constraints on a spectrum could better help 
modelers create a more ideal fit for their specific application.

Atmospheric transport is a well-researched area of atmospheric modeling in general. There have been a number of semi-
Lagrangian (SL), also called Arbitrary Lagrangian–Eulerian (ALE), methods implemented with varying novelties such as local 
conservation [2–5], flux-form formulation [6–8], various functional approximation models [9], deformed grid geometries 
[10,11], and methods of limiting [7,2,6,12,13,8]. There have also been Eulerian implementations of transport in atmospheric 
models [11,10,13]. For transport, SL methods often use CFL numbers that are limited only by accuracy, which itself is largely 
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due to trajectory errors. These CFL numbers can typically be much larger than the Eulerian maximum stable CFL. The larger 
the CFL number becomes, the larger the halo region for parallel data transfer becomes. For a more thorough review of SL 
methods in particular, please see [14,8] and references therein.

SL schemes have an advantage in terms of parallel efficiency because in a single stage, they can perform arbitrarily 
high-order-accurate time integration of transport, given the trajectories are sufficiently accurate. SL methods translate spatial 
information into temporal information through these trajectories. The present method, though in the Eulerian framework, 
shares some of the philosophy of SL methods because the ADER procedure also translates spatial information into temporal 
information. Like SL methods, ADER-DT methods perform arbitrarily high-order-accurate time integration in a single stage 
through the PDE definition itself and the use of Differential Transforms (DTs) [15,16]. Also like SL methods, ADER maintains 
non-oscillatory properties of an underlying reconstruction in the time integration. Unlike SL methods, however, trajectories 
do not need to be formed for ADER methods, but rather the temporal evolution is generated from within a given cell.

In Section 2, the numerical method is described in detail including the framework, time discretization, spatial reconstruc-
tion, limiting, and computational properties. In Section 3, the limited ADER-DT methods are evaluated using standard test 
problems with error norms and other quantitative and qualitative evaluations. Finally, conclusions are drawn in Section 4.

2. Multi-dimensional numerical framework

This study is concerned with the 2-D, Cartesian transport equation for the scalar mixing ratio, ψ(x, y, t), of a passive 
tracer quantity. The quantities actually stored and evolved in a typical flux-form fluid model are density (ρ), momenta (ρu
and ρv), and tracer mass (ρψ ), where u(x, y, t) and v(x, y, t) are fluid velocities in the x- and y-dimensions, respectively. 
Therefore, the momenta are defined with bold face as u ≡ ρu and v ≡ ρv and the tracer mass as q ≡ ρψ . Thus, the 
transport equation is stated as:

∂q

∂t
+ ∂ f

∂x
+ ∂ g

∂ y
= 0 (1)

where f = qu/ρ and g = qv/ρ .

2.1. Finite-volume framework

The local cell domain is defined by Ωi, j ∈ [xi− 1
2
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2
] × [y j− 1

2
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2
= xi ± 1

2 �xi , y j± 1
2

= y j ± 1
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�xi and �y j are the grid spacings in the x- and y-directions, respectively, for cell Ωi, j . To form the Finite-Volume (FV) 
evolution equation, (1) is integrated over a local space–time domain defined by Ωi, j × [tn, tn+1], where tn+1 = tn + �tn , 
giving:
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qi, j,n = 1
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q(x, y, tn)dxdy (7)

where f i, j,n(x, y, t) and gi, j,n(x, y, t) are local space–time polynomials of the flux terms, f and g , valid over the space–time 
domain, Ωi, j × [tn, tn+1]. Eq. (7) exists solely for initialization purposes and is not actually integrated during a simulation. 
Thus, computing (3)–(6) is enough to complete a single time step. Eqs. (3)–(4), and hence f̂ and ĝ , are the numerical flux 
functions used to reconcile discontinuous estimates at the positive and negative limits to each cell face. Note that a fully 
discrete (i.e., single-stage, single-step) form has been assumed by casting the time integral directly. The only new global 
quantity added to an existing fluid model in this framework is one time-level of the tracer mass, qi, j,n , which is overwritten 
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at each new time step. This is in contrast to semi-discrete methods like Runge–Kutta and Adams–Bashforth ODE integrators, 
which require at least one (usually more) additional copy of q.

Regarding mass conservation, any finite-volume scheme on a periodic domain that relies a single flux vector between 
adjacent cells is automatically locally and globally mass conserving. This is true regardless of how the single flux vector is 
computed or the accuracy of the scheme. Therefore, the methods implemented herein are all exactly mass conserving down 
to machine precision effects (in this case, a relative mass change of order 10−15 or less). We used simple summations of 
cell mass across the global domain at the beginning and end of the simulation to compute these measures of relative mass 
conservation.

2.2. Tensor reconstruction

For an Nth-order accurate transport scheme, it is assumed that one already knows ui, j,n(x, y, t), vi, j,n(x, y, t), and 
ρi, j,n(x, y, t) such that mixed space–time derivatives can be obtained, valid at the space–time point (xi, y j, tn) of total 
order up to (N − 1) with the jth-order mixed derivative being at least (N − j)th-order accurate. If the driving fluid model 
uses ADER-DT, this is already known. However, if another integration method is used for the driving fluid model, then one 
must perform an ADER-DT procedure on u, v, and ρ starting at the correct time level.

From here, it is also assumed that qi, j,n ∀i, j are available, according to the definition (7). To obtain all of the neces-
sary derivatives, a genuinely multi-dimensional spatial polynomial, qi, j,n(x, y), is reconstructed from a surrounding stencil 
of N × N values: qk,l,n where k ∈ {i − s, . . . , i + s}, l ∈ { j − s, . . . , j + s}, and s = (N − 1)/2. For a symmetric stencil, it 
makes sense to choose schemes of odd-ordered accuracy. Therefore, 3rd-, 5th-, and 7th-order accurate schemes are im-
plemented. Implementation of the reconstruction is important. A straightforward approach, multiplying a pre-computed 
N2 × N2 Vandermonde inverse by the N × N stencil values leads to a computational complexity of N6. A common im-
provement to this used in many multi-dimensional models is the tensor approach detailed in [17] wherein one computes 
(A y ⊗ I)(I ⊗ Ax)φ ≡ Axφ A�

y where Ax and A y are the 1-D Vandermonde inverses in the x and y directions, respectively, 
and φ is a vector containing the N × N stencil values in a single array with the x-dimension index varying the fastest. This 
computation is only N3 complexity.

2.3. The ADER-DT time discretization

Now that the spatial derivatives are computed at time tn , the ADER-DT process has all the necessary components for 
initialization. Given an initial tensor of spatial DTs for q, one can iterate over the DT of the PDE being solved as follows:

Q (kx,ky,kt + 1) = −kx + 1

kt + 1
F (kx + 1,ky,kt) − ky + 1

kt + 1
G(kx,ky + 1,kt) (8)

F (kx,ky,kt) = 1

R(0,0,0)

kt∑
rt=0

ky∑
ry=0

kx∑
rx=0

Q (rx, ry, rt)U(kx − rx,ky − ry,kt − rt)

− R(rx, ry, rt)F (kx − rx,ky − ry,kt − rt) (9)

G(kx,ky,kt) = 1

R(0,0,0)

kt∑
rt=0

ky∑
ry=0

kx∑
rx=0

Q (rx, ry, rt)V(kx − rx,ky − ry,kt − rt)

− R(rx, ry, rt)G(kx − rx,ky − ry,kt − rt) (10)

where the capital letter of a variable is considered to be its DT (the capital letter of ρ being R). The indices kx , ky , and kt
represent the order of differentiation in the x, y, and time dimensions, respectively. Any terms in (9) and (10) that would 
cause self-dependence should be omitted from the summation. This can be done conveniently by simply setting the arrays 
for F and G to zero upon initialization. Then F (0, 0, 0) and G(0, 0, 0) should be computed and stored before looping begins, 
and overwriting F (0, 0, 0) and G(0, 0, 0) during looping should be avoided with an if statement. Formally, the only DTs that 
will be used are F and G , and Q is only computed in order to get F and G . F and G are identically the coefficients for the 
space–time Taylor polynomials f i, j,n(x, y, t) and gi, j,n(x, y, t) because the inverse DT is the Taylor expansion. The ADER-DT 
procedure is performed once per cell per time step, forming a Taylor series about the cell centroid and time step beginning, 
which is valid over the cell and time step in question.

For help implementing the ADER-DT procedure and for a more thorough explanation and derivation of various DTs, 
please consult [15,16] and references therein.

2.3.1. Differences between ADER, ADER-CG, and ADER-DT
While there are a number of differences between traditional ADER [18], ADER-CG [19,20], and the ADER-DT scheme 

presented herein regarding framework and implementation, this section focuses on the generation of time and space–time 
information. The original ADER scheme used a symbolic-based Cauchy–Kowalewski procedure to generate time and space–
time derivatives. Practically, for a non-trivial PDE, symbolic mathematical software must be used to generate these complex 



4 M.R. Norman / Journal of Computational Physics 274 (2014) 1–18
expressions directly into code. These symbolic expressions can increase to exponential computational complexity with in-
creasing order, making them difficult to use for arbitrarily high-order accuracy in practice.

The ADER-CG method represents a big efficiency improvement to ADER in general as it reduces the complexity for 
general PDEs from exponential to polynomial. The ADER-CG method initializes a set of spatial-only nodal basis functions, 
establishes space–time bases, and then non-linearly iterates the time and space–time basis coefficients using a space–time 
variational form of the PDE. These space–time bases are polynomials, which can then be integrated. In the sense that both 
are iterated internally within a cell in a single-stage manner, ADER-DT is quite similar in nature to ADER-CG, but there are 
also some differences. First, for each new order of accuracy, for each new PDE system, and for each new grid, the ADER-CG 
must establish either (1) the locations of a new set of space–time nodes, (2) a new set of non-linear algebraic iterations, or 
both.

For the ADER-DT method, there are no node locations to establish (no internal grid at all, in fact) but only a set of spatial 
derivatives valid at the cell centroid and time step beginning. This is usually accomplished with a matrix–vector product 
against the existing moments (bases, stencils, or some combination). Also, the summations and code remain constant no 
matter what order of accuracy is used. Order of accuracy in generating time and space–time derivatives is increased merely 
by changing one line of code: the loop bounds of the outer summation expressions. Also, once DTs of a PDE system are 
coded, they remain the same for any grid or order of accuracy. Coding the DTs for a new PDE can be cumbersome, but 
additional spatial dimensions only involve adding new indices and new loops. Because ADER-DT provides a straightforward 
high-order space–time Taylor expansion of each PDE term as the final result, it seems to be a particularly flexible option 
regarding order, mesh, PDE system, and spatial operator.

2.4. Half-tensor space–time evolution

Space–time derivatives of total order larger than N − 1 have little effect on the total error because their error is much 
smaller than the formal truncation of the scheme. This has been confirmed in practice with numerical experiments using 
both a quadrature-free ADER-DT framework and a Runge–Kutta time integration with quadrature. Therefore, it makes the 
most sense to ignore derivatives of total order higher than N − 1 by throwing them away. The only step wherein deriva-
tives of total order higher than N − 1 are computed is the reconstruction of Section 2.2. When the ADER-DT procedure 
is performed, space–time derivatives of order higher than the formal truncation of the overall scheme are not computed. 
This leads to a triangular loop structure in both the inner and outer loops of the ADER-DT procedure, which is addressed 
computationally in Section 2.6.

Taking the total number of loop iterations for F and G to be proportional to runtime cost, the cost of computing 
a full tensor of DTs up to order N − 1 in each spatial dimension and in time is proportional to (N + 1)3N3/23. Yet, if 
derivatives of total order larger than N − 1 are discarded (i.e., using only a half-tensor of space–time derivatives), then 
runtime cost is now proportional to (N + 5)!/(6!(N − 1)!). For N = 3, N = 5, and N = 7, computing a half tensor instead 
of a full tensor saves a factor of 7.7, 16.0, and 23.8, respectively, for the ADER-DT procedure. Also, when computing only a 
half-tensor of derivatives, the analytical integration of the flux space–time polynomials at cell boundaries is also significantly 
cheaper because there are many fewer terms in the space–time polynomials. A full tensor of derivatives has N3 terms in 
the space–time polynomial, while the half-tensor only has (N + 2)!/(3!(N − 1)!) terms.

It is infeasible for memory requirements and for caching efficiency to store the full N3 tensor of data for q, u, v, and ρ . 
Therefore, the half-tensor is actually stored in a single-dimension array with the x-dimension varying the fastest and the 
time dimension varying the slowest. To efficiently index this single-dimension array, a small integer arithmetic function 
is used to map the x, y, and time indices to a single index. This function changes only changes if the order of accuracy 
changes. Algorithmically, once a full tensor of derivatives is produced by tensor-based reconstruction, those values are passed 
through a routine that immediately condenses them into the smaller, half-tensor-sized, single-dimension array. This storage 
condensing routine consumes very little runtime compared to the other routines, and its looping overhead is significantly 
reduced by the blocking technique of Section 2.6.

2.5. Analytical, quadrature-free integration

As a result of the ADER-DT procedure, f i, j,n(x, y, t) and gi, j,n(x, y, t) for all i and j are obtained as Nth-order accurate 
space–time polynomials valid over the space–time domain: Ωi, j × [tn, tn+t]. Therefore, quadrature is not necessary, and 
analytical space–time integration can be performed. For each cell, after the fluxes are expanded as space–time polynomials, 
(5) and (6) are computed analytically with a single linear combination of polynomial coefficients. The linear combination of 
coefficients for space–time integration is precomputed because it is the same for each cell, and Sage symbolic mathematical 
software is used to compute these linear combinations and translate them directly to Fortran 90 code.

2.6. Blocking the reconstruction, ADER-DT, and integration

The ADER-DT procedure is the most expensive single portion of this algorithm, and the looping overhead is quite large 
compared to the small amount of computation performed at the innermost loop level. Because of this, a blocking option is 
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implemented to improve the amount of Single Instruction Multiple Data (SIMD) level parallelism for improved on-chip per-
formance. A small local array is created, which holds a block of bx × by cells, and the fastest varying index loops over these 
indices. The stencils for this block are stored redundantly so that the reconstruction, ADER-DT, and integration procedures 
can all be performed simultaneously. This increases the memory usage locally, and it requires a packing procedure, but the 
packing takes up very little time relative to the other operations, and memory increase is limited to the size of the block.

Using this blocking has two benefits. First, it enables SIMD operations to work on Streaming SIMD Extension (SSE) 
enabled processors. Second, the looping overhead becomes significantly smaller in the ADER-DT procedure because relatively 
more computation is done at the inner-most level. For the present 2-D transport problems, a block size of 64 was found 
to be the most effective with 64-bit precision on an AMD bulldozer processor, but the user can tune this to their own 
processor. Ideally, if the problem size is large enough, one would set bx = 64 and by = 1, which has the x-dimension 
varying the fastest. However, there is flexibility to keep the block size at 64 even when the number of cells is less than that 
in the x-dimensions. Also, it is wise to constrain the number of cells in each dimension to an integer multiple of the block 
size in that dimension so that no loop iterations are wasted. Since the upwind numerical flux and the update of qi, j,n+1 are 
significantly less expensive than reconstruction, ADER-DT, and space–time integration of face fluxes, those portions are not 
blocked.

In the event of using a highly threaded acceleration device like Intel’s MIC or an Nvidia or ATI GPU, the size of the block 
may be substantially increased at the expense of repeating the stencils in local memory. Doing this, the reconstruction, 
ADER-DT, and integration procedures can provide ample data-independent threading.

2.7. Time-averaged upwind numerical flux

An upwind numerical flux is used at cell faces to reconcile discontinuous time-averaged flux limits at either side of an 
interface. To perform the upwinding, space–time integrations of the momenta at cell faces are computed:

ui, j,± 1
2

=
tn+1∫
tn

y
j+ 1

2∫
y

j− 1
2

ui, j,n(xi± 1
2
, y, t)dydt (11)

vi, j,± 1
2

=
tn+1∫
tn

x
i+ 1

2∫
x

i− 1
2

vi, j,n(x, y j± 1
2
, t)dxdt (12)

If more than one tracer is evolved, this wind averaging is done only once for all tracers per time step. Because density is a 
positive quantity and cannot change the sign of the wind, the momenta are used directly rather than dividing by density. 
The time-averaged upwind Riemann solver is defined as:

f̂
(
u−,u+, f −, f +) =

{
f − if u− + u+ > 0
f + otherwise

ĝ
(
v−,v+, g−, g+) =

{
g− if v− + v+ > 0
g+ otherwise

where the function inputs match the inputs of (3)–(4). Only one Riemann solver is applied per interface per time step per 
tracer. Also, for analytical wind values, there is no merit in using interface limits since they will be the same. However, 
when coupling to a general fluid model, especially one with limiters like WENO, these limits will not generally be the same. 
Since this codebase is to be coupled to a fluid model, the more general form is used to best understand cost in a real 
application.

2.8. WENO limiting

Unlike most schemes that use WENO limiting, this scheme needs full multi-dimensional polynomials of Nth-order ac-
curacy, not just point values at cell boundaries. Since WENO does not form these high-order polynomials directly, short of 
using an extremely high-order-accurate (2N − 1)th-order method, this information is not immediately available. This study 
uses a slight tweak on the innovative sub-cell WENO technique of [21]. The implementation here will be described in detail 
since some simplifications are used and the computation of point values is slightly different when done in multiple dimen-
sions. The WENO technique is applied in a series of 1-D sweeps to accomplish genuinely multi-dimensional limiting. As 
diagramed in Fig. 1(a), starting with the x-direction, for each row of cells for the stencil in question (i.e., l ∈ [−s, s] where 
s = (N − 1)/2 is the so-called “halo” size), a 1-D WENO procedure is performed using the stencil qi+k, j+l,n where k ∈ [−s, s], 
to compute non-oscillatory line averages at a series of x-locations: xi,κ = xi− 1

2
+ κ

N−1 �xi where κ ∈ {0, . . . , N − 1}\{ N−1
2 }. 

These line averages are defined as:
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Fig. 1. Schematics of the dimension-by-dimension sub-cell WENO procedure adapted from [21] for up to third-order accuracy.

Fig. 2. Plots of the spread of optimal WENO weights and the minimum optimal WENO weight as a function of the sampling location within a cell.

qi, j+l,n,κ ≡ 1

�y j

y
j+l+ 1

2∫
y

j+l− 1
2

q(xi,κ , y, tn)dy (13)

The relation (13) is not something explicitly integrated but rather defines what is obtained after the x-dimension 1-D WENO 
sweeps.

Typically, a WENO scheme is well-behaved at the cell boundaries, and this is where most point-wise WENO schemes 
compute the optimal weights. However, every WENO scheme (defined uniquely by the choice of lower-ordered and optimal-
order polynomials) exhibits different behavior when computing optimal weights for general points within the cell being 
reconstructed. Fig. 2 shows plots of the spread (maximum minus minimum) of optimal weights along with the minimum 
optimal weight for third-, fifth-, and seventh-order accuracy. Each scheme has different points of singularity when comput-
ing optimal weights. For the third-, fifth-, and seventh-order schemes, uniform spacing of points (except the cell center) 
happens to land in well-behaved regions, but the reader should be careful of assuming this in general. Also, while the 
weights are fairly well behaved at the cell center for fifth-order accuracy, negative weights emerge that require treatment 
according to [22]. Thus, this study avoids the center point as with the third- and seventh-order schemes in order to both 
keep the WENO procedure consistent and avoid needing to treat negative weights. To obtain a line-averaged value at the 
cell center location, xi , for each 1-D sweep, a polynomial is constrained by the other WENO-derived line averages and by 
the cell mean (which is inherently non-oscillatory) and then sampled at xi . In practice, this is all precomputed such that 
the center value is simply a linear combination of the other point values and the cell mean.

Note that most of the computation lies in computing smoothness indicators and non-oscillatory weights, and the same 
weights are reused for each point xk . Therefore, computing multiple point values does not significantly increase WENO ex-
pense. Also, the cost of computing WENO weights is further mitigated by computing these weights only once per direction. 
A column-averaged x-direction stencil is formed from the original stencil values:

qi+k, j,n = 1

N

s∑
l=−s

qi+k, j+l,n (14)

Then, limited weight are computed only once per direction based on these averaged values with a similar treatment in the 
y-direction. This significantly reduces the cost of multi-dimensional WENO, and it does not appreciably affect the results, 
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even for solid body rotation and deformational flows. The weight mapping technique of [23] is also used here to improve 
convergence to optimal weights within smooth regions of flow. Because this is performed only once per direction per time 
step, its cost is negligible. Also, by locally saving the original weights before mapping, one can perform a continuous transi-
tion in weight mapping for any positive real number. This gives the user a continuous tuning parameter for determining the 
smoothness of their results to match their application. Also, the exponent applied to smoothness indicators when computing 
limited weights can be any positive real number to provide yet another continuous tunable parameter for smoothness ver-
sus accuracy. The larger the smoothness indicator exponent and the smaller the weight mapping coefficient, the smoother 
the results.

Next, as diagramed in Fig. 1(b), for each column of line averages, a series of y-direction WENO procedures is performed 
in the same manner as the x-dimension sweep in order to obtain a 2-D grid of non-oscillatory point values located inside 
Ωi, j :

qi, j,n,κ,λ ≡ q(xi,κ , y j,λ, tn) (15)

where y j,λ = y j− 1
2
+ λ

N−1 �y j where λ ∈ {0, . . . , N − 1}\{ N−1
2 }. As in the x-dimension sweep, the center point value at y j is 

computed as a linear combination of the limited point values directly computed and the center line average of each stencil. 
Then, instead of performing tensor reconstruction based on an N × N stencil of cell averages, a tensor reconstruction based 
on the N × N grid of point values within the center cell is used as diagrammed in Fig. 1(c).

Each 1-D WENO procedure is of order N2 complexity, and N WENO procedures are performed per sweep. Thus, the total 
complexity of 2-D WENO limiting is order N3, which is the same as the tensor reconstruction operator. In practice, this 
technique is easy to extend to more spatial dimensions, and the total complexity of the overall WENO procedure is N D+1, 
where D is the number of spatial dimensions, again matching the tensor reconstruction complexity. The blocking strategy 
is used here as well for improved on-chip performance.

When using a fully discrete time integration, there is an advantage when limiting with WENO in that the expense is 
only incurred once to limit the entire time step. Also, since the ADER-DT method analytically computes time derivatives 
from spatial derivatives using the PDE, if the underlying spatial derivatives are non-oscillatory, then so are the resulting 
time derivatives. ADER methods have shown this property in other studies as well [21,24].

2.9. FCT-enforced positivity

Non-oscillatory limiting is generally considered to be a strong requirement for most transport codes, especially when 
chemistry reactions are involved. However, another strong requirement for most transport codes is that the tracer mass 
not be allowed to become negative. There are post-hoc fixers for this, but local hole fillers are not guaranteed to succeed, 
depending on the size of the negativity violation, and they require additional parallel data transfers. Additionally, global hole 
fillers require global parallel data transfer, which is prohibitive in large parallel environments. Since non-oscillatory limiters 
are not strictly monotone, strict positivity is not enforced by WENO alone. The negative values are small and tunable, but 
they happen. Therefore, an FCT-based positivity filter is employed for strict positivity [25]. Define the outward-oriented flux 
divergence in cell Ωi, j as:

Fi, j,out = 1

�xi�y j

(
max( f̂ i+ 1

2 , j,0) − min( f̂ i− 1
2 , j,0) + max( ĝi, j+ 1

2
,0) − min( ĝi, j− 1

2
,0)

)
(16)

To keep qi, j,n+1 positive, it just needs to be ensured that the mass leaving the cell is not larger than the mass in the 
cell: i.e., qi, j,n − Fi, j,out ≥ 0. To do this, define a flux reduction factor φi, j = qi, j,n/(Fi, j,out + ε) for each cell, where ε is a 
small number to avoid division by zero. Then, for each cell face, apply the upwind cell’s flux reduction factor to that face’s 
flux. After this, the update is unable to produce negative values. Note that this does not require an additional parallel data 
transfer as is the case with traditional FCT [26]. Also, this procedure can be easily adapted to apply an upper bound, for 
example if a tracer cannot exceed unity. If the negative values being disallowed by FCT are relatively large, this procedure 
can cause serious numerical artifacts to form. However, after applying a WENO limiter, the FCT corrections are quite small. 
Therefore, numerical artifacts are also small. After applying WENO and FCT, the present transport algorithm provides a 
robust, positive-definite solution with less damping than strictly monotone limiters.

2.10. Stability

To assess the numerical stability of the new methods in multiple dimensions, define a spatial harmonic function:

qh(x, y) = ei( κxπ
�x x+ κyπ

�y y) (17)

where the grid will admit wave numbers such that kx, ky ∈ [0, 1]. This harmonic function is used as an input to the pre-
viously described ADER-DT method (except for the non-linear WENO and FCT filters) applied to ∂tqh + ∂xqh + ∂yqh = 0. 

A stencil is initialized with qh,i, j,n = 1
�xi�y j

∫ y
j+ 1

2
y

j− 1
2

∫ x
i+ 1

2
x

i− 1
2

qh(x, y)dxdy, where i, j ∈ [−s − 1, s + 1] for s = (N − 1)/2, and this 

stencil is used to apply the ADER-DT algorithm to the stencil’s center cell averaged value. After applying the ADER-DT FV 
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Fig. 3. Amplification factor for ADER-DT at the maximum stable CFL value. x-axis and y-axis are κx and κy , respectively, from (17).

algorithm, the amplification factor is defined as A = qh,0,0,n+1/qh,0,0,n . When |A| ≤ 1 for all kx and ky , the scheme is stable 
using that time step. Defining the CFL value as umax�t/�x (where �x = �y) and using a bisection search over time step, 
the maximum stable CFL value is calculated for the ADER-DT scheme at third-, fifth-, and seventh-order accuracies to be 
0.500, 0.602, and 0.607, respectively. These numbers were the same when computed in 64-bit and 128-bit floating point 
precision. As expected, resolution power is visibly increased with increasing order as shown by Fig. 3.

2.11. Parallel efficiency of WENO-limited ADER-DT

There are aspects of this framework that lend themselves well to large parallel simulations wherein parallel data trans-
fer costs are very high compared to computation within a node. First, the ADER-DT time discretization is single stage. 
This means there are no required data transfers within a time step no matter how high-order the accuracy is in time. 
Data is transferred only once at the time step beginning. With multi-stage time integrators such as Runge–Kutta, parallel 
data transfers are required in between each stage. Therefore, ADER-DT is communication-avoiding compared to multi-stage 
methods.

Also, regarding limiting, the use of WENO also has advantages compared to post-hoc limiting such as traditional FCT 
and/or hyperdiffusion. Each application of hyperdiffusion requires an additional data exchange beforehand, and for higher-
order hyperdiffusion, either the halo size must increase (for FV methods) or the number of parallel transfers must increase 
(for Galerkin methods). For FCT in its traditional form (i.e., not the positivity-only form), one typically must first apply a 
hyperdiffusive operator to avoid terracing artifacts, and then one must solve for both a high-order and low-order solution, 
each of which require separate data transfer.

For WENO, this limiting is performed beforehand so that as the integration is performed, there are no oscillations, and 
it does not require an additional parallel data transfer. The reason is that an Nth-order accurate method resorts to the 
use of off-centered ((N + 1)/2)th-order-accurate polynomials in the presence of a discontinuity, which successfully limits 
oscillations without requiring additional parallel data transfers. Smooth regions of the flow are not damped by the WENO 
limiting and remain at high-order accuracy. With WENO and the positivity-only version of FCT, there is only one parallel 
data transfer required at the beginning of a time step with no other transfers required during the time step. Therefore, with 
one parallel data exchange, a full, arbitrarily high-order-accurate, limited, and positive-definite time step can be performed. 
This is advantageous in a large parallel computing environment.

3. Numerical experiments

For all tests except the consistency check, the density field will be ρ(x, y, t) = 1. Boundaries are periodic, and the spatial 
domain is [0, 1] × [0, 1]. For the winds in the ADER-DT method, the space–time DTs for u and v are computed analytically 
at the beginning of each time step. Error norms are computed as:

L1 = 1

nxny

∑
i, j

|qa,i, j − qn,i, j|

L2 =
√√√√ 1

nxny

∑
i, j

(qa,i, j − qn,i, j)
2
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Table 1
ADER-DT error norms and convergence rates for uniform advection of a 2-D sine wave function. CFL = 0.45 in all tests.

Order # Cells L1 Conv. L2 Conv. L∞ Conv.

3 64 1.18E−04 1.32E−04 1.37E−04
128 1.48E−05 −3.00 1.65E−05 −3.00 1.71E−05 −3.00
256 1.85E−06 −3.00 2.06E−06 −3.00 2.14E−06 −3.00

5 64 3.39E−07 3.82E−07 4.36E−07
128 1.06E−08 −5.00 1.20E−08 −5.00 1.36E−08 −5.00
256 3.32E−10 −5.00 3.74E−10 −5.00 4.26E−10 −5.00

7 64 6.62E−10 7.47E−10 8.57E−10
128 5.19E−12 −7.00 5.85E−12 −7.00 6.71E−12 −7.00
256 4.34E−14 −6.90 5.13E−14 −6.83 6.84E−14 −6.62

L∞ = max
i, j

|qa,i, j − qn,i, j|
where qa and qn are the analytical and numerical solutions, respectively, and nx and ny are the number of grid points in 
the x- and y-directions, respectively.

3.1. Uniform advection

3.1.1. Runge–Kutta quadrature-based method for comparison
A Runge–Kutta (RK), quadrature-based method is included for this test to provide some comparison point for the ADER-

DT method. A simple, low-storage, N-stage, Nth-order-accurate RK method described by Eq. (2.45) in [25] is used for a 
spatially Nth-order-accurate method. The same blocking, the same reconstruction, the same sub-cell WENO procedure, and 
the same half-tensor storage as the ADER-DT method is used, but fluxes are calculated for each stage of the RK method 
using spatial quadrature at the cell faces. For an Nth-order-accurate overall method, an (N + 1)/2-point Gauss–Legendre 
quadrature rule is used to ensure fluxes are integrated at a sufficient order of accuracy to maintain the scheme’s over-
all formal order of accuracy. Since density and winds are identically unity in space and time for this test case, analytical 
computation of these values does not come into play in this comparison. The author’s best attempt was made to ensure 
equal efficiency in both RK and ADER-DT codebases, which both utilized 8-way threading and blocking. In fact, the blocking 
proved more beneficial for RK than for ADER-DT compared to no blocking. Each codebase shares much of the same code, 
including reconstruction, WENO-limiting, reconstruction condensing, and flux upwinding.

3.1.2. Results
A 2-D sine wave defined by ψ(x, y, 0) = [sin(2πx) sin(2π y) + 1]/2 is advected with a spatially uniform and temporally 

constant velocity of u = v = 1 m s−1. Each model second represents one translation over the domain. Since u(x, y, t) =
v(x, y, t) = ρ(x, y, t) = 1, the fluxes are analytically integrated in space for both the ADER-DT and RK models, meaning that 
the only appreciable source of difference in accuracy is due to the time stepping procedure.

Table 1 provides the error norms for the ADER-DT method undergoing cell refinement at third-, fifth-, and seventh-order 
accuracies to demonstrate expected convergence rates. The seventh-order refinement reaches machine precision limits be-
fore the full convergence at 256 × 256 cells. When computed with WENO and FCT enabled, the errors differed from default 
simulation by a relative magnitude of 10−6 or less, which is expected for smooth flows. Therefore, these numbers are not 
presented verbatim to avoid redundance. The WENO + FCT simulations did reach machine precision limits at numbers 
slightly larger than the default simulations, indicating slightly more cancellation in the seventh-order WENO procedure. 
This will not affect real simulations, which exhibit errors many orders of magnitude larger than machine precision.

Table 2 provides error norms for the RK time discretizations with spatial quadrature, and all differences in error (apart 
from machine precision effects) should be due to the time discretization because the spatial polynomials are integrated 
analytically in each case. At third-order accuracy, ADER-DT consistently produced 1.7× less error than RK in the L1 norm 
and 3.4× less error than RK in the L∞ norm. At fifth- and seventh-order accuracies, ADER-DT was 1.2× lower in error the 
L1 norm and 2.3× lower in error in the L∞ norm. The improvements in temporal discretization error are the greatest for 
the largest model errors, which are the peaks and crests of the 2-D sine wave in this case.

For runtimes, CPU time and wall time timers were used, and they differed by less than 5% in all cases (see Table 3).
Thus, only wall times are presented to avoid redundancy. 8-way threading was used with an OpenMP implementation with 
the previously mentioned blocking for cache efficiency, SIMD utilization, and reduced looping overheads for all schemes on 
an AMD bulldozer chip. The paired cores (i.e., 16-way threading) were not used so as to reduce thread resource contention 
and particularly runtime variability, for a more robust and consistent comparison between RK and ADER-DT runtimes.

Without applying WENO and FCT limiting, the ADER-DT runtime improvements over RK reduce with increasing order 
due to the increasing cost of the ADER-DT procedure itself, which has a computational complexity of N6 for an Nth-order-
accurate scheme in two spatial dimensions plus time. With limiting, however, since ADER-DT requires only one WENO 
limiting per time step, it becomes increasingly cheaper in comparison to RK as order increases. Also notable is that WENO-
limiting becomes relatively less expensive for ADER-DT as order increases because (1) it is only required once per time step 
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Table 2
RK with quadrature error norms and convergence rates for uniform advection of a 2-D sine wave function. CFL = 0.45 in all tests.

Order # Cells L1 Conv. L2 Conv. L∞ Conv.

3 64 1.96E−04 2.35E−04 4.60E−04
128 2.45E−05 −3.00 2.94E−05 −3.00 5.77E−05 −3.00
256 3.07E−06 −3.00 3.68E−06 −3.00 7.22E−06 −3.00

5 64 4.03E−07 4.97E−07 9.95E−07
128 1.26E−08 −5.00 1.56E−08 −5.00 3.11E−08 −5.00
256 3.95E−10 −5.00 4.86E−10 −5.00 9.73E−10 −5.00

7 64 7.93E−10 9.78E−10 1.96E−09
128 6.21E−12 −7.00 7.66E−12 −7.00 1.53E−11 −7.00
256 5.22E−14 −6.90 6.40E−14 −6.90 1.30E−13 −6.88

Table 3
Wall times in seconds for one model second of uniform transport of a 2-D wine wave with 256 cells with and without WENO + FCT limiting for ADER-DT 
and RK time discretizations. “Lim” denotes use of WENO and FCT limiting.

Order ADER RK (RK)/(ADER) (Lim)/(Default)

Default Lim Default Lim Default Lim ADER RK

3 2.36 5.22 4.83 13.29 2.04× 2.55× 2.21× 2.75×
5 11.13 18.09 18.66 52.94 1.68× 2.93× 1.63× 2.84×
7 36.60 54.41 50.53 172.87 1.38× 3.18× 1.49× 3.42×

Fig. 4. Plot of initial data for SBR tests.

and (2) the ADER-DT procedure becomes increasingly expensive with increasing order. It becomes relatively more expensive 
for RK with increasing order because the constant of computational complexity is larger for WENO than it is for 2-D spatial 
reconstruction. Thus, the biggest utility of ADER-DT efficiency is realized in a limited context.

This is important because WENO is regarded by many as being prohibitively expensive. But if the overhead of WENO 
in the seventh-order accurate case is only 50%, and if it doesn’t require any additional parallel communications, then one 
could argue it is advantageous to other methods of limiting such as FCT and hyperdiffusion, which incur the same or greater 
overhead and require additional parallel communications.

3.2. Solid body rotation (SBR)

The SBR tests are used to perform a comprehensive analysis of the effectiveness of WENO limiting within this ADER-DT 
quadrature-free FV framework at varying orders of accuracy. For solid body rotation, the winds are initialized as u = −ωy
and v = ωx, where ω = 2π . The tracer field is initialized, as shown in Fig. 4, with a linear cone (ψ1), a cosine bell (ψ2), and 
a slotted cylinder (ψ3). They are defined as follows:

ψ1(x, y,0) = max(1 − r1,0)

ψ2(x, y,0) =
{

1
4 (cos(πr2) + 1) if r2 ≤ 1
0 otherwise
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Fig. 5. Plots after one SBR revolution (1 s) with 128 × 128 cells and CFL = 0.45.

ψ3(x, y,0) =
{

1 if r3 ≤ 1 and |x − xC,3| ≥ xR,3
6 or y − yC,3 ≥ yR,3

1.5
0 otherwise

ri =
√(

x − xC,i

xR,i

)2

+
(

y − yC,i

yR,i

)2

, i ∈ {1,2,3}

where xC,1 = 0.50, yC,1 = 0.25, xR,1 = yR,1 = 0.15, xC,2 = 0.25, yC,2 = 0.50, xR,2 = yR,2 = 0.2, xC,3 = 0.50, yC,3 = 0.75, and 
xR,3 = yR,3 = 0.15. Each model second represents a full revolution around the domain.

In Fig. 5, results are plotted after one revolution (one model second) using the default scheme, a WENO scheme with 
a smoothness indicator exponent of two and one application of weight mapping (this is considered the default WENO 
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Fig. 6. Same as Fig. 5, except the color bar is changed to highlight oscillations to show the effect of WENO limiting without the positivity filter.

scheme), and a “WENO*” scheme that uses a smoothness indicator exponent of four and no weight mapping to represent 
a much smoother version of WENO. Visually, one can see the progression from very oscillatory to less and less oscillatory. 
The WENO* scheme demonstrates the fact that in raising the exponent of smoothness indicators, one approaches the ENO 
scheme wherein only one of the stencils is used each time. The WENO* scheme is highly diffusive, and overshoots are 
reduced to order 10−3 relative to the size of the discontinuity in question.

For Fig. 6, the FCT positivity filter is removed and the color bar is zoomed in toward small magnitudes about the zero 
contour to visually show oscillations, particularly around the slotted cylinder. Here, one can see how WENO reduces the 
radius of noise contamination around the slotted cylinder, and how WENO* quite effectively eliminates the noise, demon-
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Table 4
Error norms using 128 × 128 cells after 1 revolution of SBR with all of the data and each shape individually as well. “WENO*” denotes WENO run with a 
smoothness indicator exponent of 4 and no weight mapping.

Order Data Default WENO + FCT WENO* + FCT

L1 L2 L∞ L1 L2 L∞ L1 L2 L∞
3 All 1.84E−02 6.33E−02 5.70E−01 2.15E−02 7.72E−02 6.57E−01 3.12E−02 9.62E−02 6.77E−01

ψ1 8.71E−04 3.39E−03 6.90E−02 6.27E−04 2.98E−03 7.54E−02 1.75E−03 7.00E−03 1.48E−01
ψ2 1.69E−04 4.84E−04 5.70E−03 5.47E−05 1.83E−04 2.05E−03 2.81E−04 8.48E−04 1.66E−02
ψ3 1.74E−02 6.32E−02 5.70E−01 2.07E−02 7.71E−02 6.57E−01 2.91E−02 9.58E−02 6.77E−01

5 All 1.21E−02 4.72E−02 4.47E−01 1.11E−02 5.06E−02 4.74E−01 1.55E−02 6.16E−02 5.41E−01
ψ1 3.61E−04 1.47E−03 2.90E−02 2.82E−04 1.34E−03 2.92E−02 3.96E−04 1.76E−03 3.99E−02
ψ2 3.09E−05 1.06E−04 1.46E−03 1.75E−05 6.99E−05 1.12E−03 3.12E−05 1.06E−04 1.48E−03
ψ3 1.18E−02 4.72E−02 4.47E−01 1.08E−02 5.05E−02 4.74E−01 1.51E−02 6.15E−02 5.41E−01

7 All 9.69E−03 3.85E−02 3.80E−01 8.19E−03 3.99E−02 3.97E−01 1.23E−02 5.26E−02 5.41E−01
ψ1 2.31E−04 9.45E−04 1.66E−02 2.07E−04 9.85E−04 1.66E−02 2.46E−04 1.09E−03 2.29E−02
ψ2 1.51E−05 5.21E−05 7.77E−04 1.31E−05 5.48E−05 1.02E−03 1.53E−05 5.26E−05 7.89E−04
ψ3 9.46E−03 3.85E−02 3.80E−01 7.90E−03 3.98E−02 3.97E−01 1.21E−02 5.26E−02 5.41E−01

Table 5
Global minimum and maximum values using 128 × 128 cells after 1 revolution of SBR evolving all data. “WENO*” denotes WENO run with a smoothness 
indicator exponent of 4 and no weight mapping.

Order Data Default WENO WENO + FCT WENO*

3 min −0.059 −0.013 0.000 −0.004
max 1.114 1.033 1.033 1.000

5 min −0.138 −0.062 0.000 −0.004
max 1.142 1.056 1.058 1.007

7 min −0.188 −0.101 0.000 −0.005
max 1.137 1.059 1.060 1.000

strating that ADER-DT with WENO limiting is capable of producing results that are close to shape preserving for applications 
that require that level of shape preservation.

Table 4 provides error norms for all of the shapes together and each shape separately to help the reader see how the 
accuracy is influenced by these choices in WENO and WENO* limiting. By increasing the smoothness indicator exponent 
and taking away the weight mapping, the WENO weights are much slower to converge to optimal values. This effect is 
clear in the error norms as accuracy can degrade quite a bit for the smoother functions. This study’s main purpose is to 
demonstrate the range of limiting versus accuracy that this framework can provide, depending on the balance of accuracy 
and shape preservation a user desires for their particular transport application. In Table 5, the minimum and maximum 
values are explicitly given when using no limiting and when using WENO and WENO* limiting to show more clearly how 
much limiting is being performed. The WENO* limiting, even at seventh-order accuracy admits overshoots of only order 
10−3 relative to the magnitude of the discontinuity.

3.3. Deformational flow

The deformational flow test cases are used to assess the performance of ADER-DT on preserving filaments as well as the 
effect of FCT, WENO, and WENO* limiting in this context. For deformational flow, the winds are initialized as u(x, y, t) =
sin2(πx) sin(2π y) cos(πt/T ) and v(x, y, t) = − sin(2πx) sin2(π y) cos(πt/T ) where T = 5 is the final simulation time. The 
tracer field is initialized as

ψ4(x, y,0) = (
cos(πr) + 1

)2
/4

where r = min(1, 4
√

(x − xC )2 + (y − yC )2) and xC = yC = 0.25.
Fig. 7 shows the result of deformational flow after forming the filament and returning to normal. Table 6 provides the 

error norms and minimum and maximum values as well. Higher-order accuracy is effective in better resolving the filament 
as expected, but also, the effects of limiting decrease with increasing order. Notably, at fifth- and seventh-order accuracies, 
some of the error norms actually improve with limiting.

3.4. Non-linear correlation preservation

A very important constraint for reactive transport applications that use passively transported tracers in reaction physics 
routines separately is that existing correlations between tracers be preserved as best as possible [1,27]. To test this, 
a new tracer, ψ5(x, y, 0) = 0.9ψ4(x, y, 0) + 0.1, is introduced as well as a non-linearly correlated tracer, ψ6(x, y, 0) =
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Fig. 7. Plots of final result of deformational flow tests at t = 5 s.

Table 6
Error norms using 128 × 128 cells after 5 seconds of deformational flow. Also included are the minimum and maximum values at t = 5 s.

Order Default WENO + FCT

L1 L2 L∞ min max L1 L2 L∞ min max

3 1.37E−02 4.32E−02 3.16E−01 −5.47E−02 7.24E−01 1.79E−02 6.12E−02 5.00E−01 0.00E+00 5.36E−01
5 6.50E−03 2.18E−02 1.78E−01 −5.21E−02 8.96E−01 5.55E−03 2.20E−02 1.81E−01 0.00E+00 8.80E−01
7 4.64E−03 1.57E−02 1.32E−01 −3.64E−02 9.61E−01 3.87E−03 1.52E−02 1.17E−01 0.00E+00 9.58E−01

−0.8[ψ5(x, y, 0)]2 + 0.9. Both ψ4 and ψ5 are evolved separately using deformational flow, and scatter plots of ψ4 and 
ψ5 after evolving with deformational flow are given in Fig. 8 using 128 × 128 cells and in Fig. 9 using 256 × 256 cells.

A perfect method would preserve the initial correlation exactly, giving a plot similar to Fig. 9(g). Anything inside the 
black outline in these figures represents physically realizable mixing for these correlated tracers. Values outside the black 
outline are considered “unmixing.” Values outside the domain [0.1, 1] × [0.1, 0.9] are considered overshoots and are often 
considered poisonous to many reaction routines such as chemistry reactions. Since the minimum value for both tracers is 
0.1, the FCT filter does not cut off undershoots in these tests, and the only active limiter is WENO.

Correlation plots for two different resolutions are shown to demonstrate that the scheme does converge to the right 
answer. When the correlations are not resolved, however, each profile is diffused in such a way that the correlations often 
exhibit some amount of unmixing. This unmixing is expected in terms of numerics because the correlated profile, ψ5, is 
steeper and therefore damped more by WENO limiting than the original profile, particularly at larger wave numbers, which 
are proxied by the lower values of ψ6. However, with WENO, the overshoots and undershoots are substantially reduced, and 
with WENO*, they are nearly eliminated altogether, demonstrating that the range of limiting provided by this framework 
should be sufficient for transport applications.

These plots provide a unique visible demonstration of the resolving power of the different schemes in terms of WENO 
damping and order of accuracy. The further down and to the right the scatter diagram extends, the better the scheme 
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Fig. 8. Scatter plots of ψ5 and ψ6 where both are evolved with the same deformational flow using 128 × 128 cells with CFL = 0.45. The x-axis and y-axis 
are ψ5 ad ψ6 values, respectively, for each point on the grid.

is at resolving the smooth extrema in ψ4 and ψ5. Clearly, the unmixing is isolated to the less resolved portions of the 
tracer profiles. Also note the severe damping effects that WENO and WENO* can have at third-order accuracy and how this 
effect diminishes relatively as the order increases. This shows visually the price paid for eliminating overshoots in terms of 
accuracy. It may be beneficial for applications to allow some amount of overshooting in exchange for improved resolution 
of the various tracer profiles. Because of the FCT limiter, none of the undershoots will result in a negative value.

As an example of potential balancing of accuracy and overshoots, consider Fig. 8(h), in which the amount of overshooting 
is still large, especially compared to third- and fifth-order accuracies in the WENO scheme. Perhaps a slightly larger amount 
of damping via less weight mapping or a larger smoothness indicator exponent would be desirable in this case.
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Fig. 9. Same as Fig. 8, except using 256 × 256 cells.

3.5. Consistency check

For transport, consistency requires that an initially uniform tracer field in the presence of a non-divergent velocity field 
must remain uniform for all time. To test this, the density field is initialized to include a slotted cylinder identical by 
defining: ρ(x, y, 0) = ψ3(x, y, 0) + 1 from Section 3.2. It is important to initialize the density field as positive and non-zero 
because zero densities are unphysical for most fluid models. A spatially uniform tracer field, ψ(x, y, 0) = 1, is used, and solid 
body rotation is used for velocities. Momentum was initialized via the DT of the product of density and velocity so that it is 
accurate to the order of the given scheme. After 1.1 revolutions, the L∞ norm comparing the final tracer field to the initial 
tracer field was 1.7 × 10−16, confirming that the scheme is indeed consistent, even for a discontinuous background density 
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field. This is with WENO limiting and FCT positivity turned on, but this is expected since there is no variation for WENO 
and FCT to respond to.

This test was also run using deformational winds. With a central flux function, e.g., ( f − + f +)/2, the scheme maintains 
consistency to machine precision just as before, with a maximum L∞ error of 1.9 × 10−16. Therefore, ADER-DT itself is able 
to maintain consistency. However, when an upwind flux function is used with deformational winds, the integration around 
the cell uses two different Taylor Series expansions to update the cell mean, and this introduces a numerical divergence 
with a magnitude of the scheme’s numerical truncation order. This is true for an upwind flux no matter what is used in the 
rest of the space–time operator. The numerically introduced divergence from the upwind flux, being at numerical truncation 
order, does converge to zero with p- and h-refinement. For instance, at third-order accuracy with 64 ×64 cells, the L∞ error 
for the upwind flux function is 8.6 × 10−5. Yet, at seventh-order accuracy with 160 × 160 cells, the L∞ error for the upwind 
flux function is 1.4 × 10−14.

4. Conclusions

The WENO- and FCT-limited ADER-DT method within the FV framework for 2-D transport has been described. Therein, 
constraints for the numerical solution to 2-D transport were given, and it was described how the present method responds 
to each constraint. Consistency is maintained by using momenta and density from the driving fluid model. Essential shape 
preservation is enabled to a tunable degree via WENO limiting with the flexibility of two continuous parameters to control 
smoothness. Accuracy is addressed by limiting only where necessary with WENO and via the use of ADER-DT, which non-
linearly couples all PDE terms to high-order accuracy over a time step. Positivity is enforced with a quick FCT limiting to the 
fluxes to ensure the mass leaving a cell does not exceed the mass in that cell. Serial runtime is addressed by evolving only 
a half-tensor of space–time derivatives, by reconstructing efficiently, by reusing WENO weights in each dimension, and by 
blocking the reconstruction, WENO-limiting, ADER-DT, and analytical integration procedures. Parallel efficiency is addressed 
by providing a fully-limited, positivity-preserving, arbitrarily high-order-accurate time step with only one required parallel 
data transfer.

These properties were demonstrated and evaluated with standard 2-D transport test cases. Using uniform transport of 
a 2-D sine wave, it was found that ADER-DT converges as expected for third-, fifth-, and seventh-order accuracies. Also, 
ADER-DT performed more accurately than a comparable RK method with less runtime. The solid body rotation test case 
was used as the primary avenue for analyzing oscillations because of the severity of the discontinuous slotted cylinder. 
Quantitative bounds and qualitative plots showed the successive reduction of oscillations when using WENO as well as 
the potential for essential shape preservation when using very smooth parameters with WENO. Thus, a range of limiting 
options was demonstrated, something tunable to the application in question to balance accuracy and shape preservation. 
Handling of filaments was demonstrated with deformational flow tests, wherein it was shown how the effect of WENO 
limiting becomes relatively less severe with increasing order without sacrificing the successful limiting of oscillations. Finally, 
correlation preservation was evaluated, and again, the range of limiting options with WENO and the ability to virtually 
eliminate overshoots and undershoots was demonstrated. Finally, consistency to machine precision was verified by using a 
discontinuous, non-uniform density field with a uniform tracer mixing ratio field.

Thus, this WENO-limited ADER-DT method in the FV framework appears well-suited for consideration in transport appli-
cations. Particularly, this study highlights the parallel properties of this scheme in that a fully-limited, positivity-preserving, 
arbitrarily high-order-accurate time step can be performed with only one required parallel data transfer. In contrast to 
traditional FCT and hyperdiffusion, this is an appealing quality.
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